集合是高一数学的基本概念之一,学生需要通过练习深入理解集合内容,才能够在高一数学期末考试中取得好成绩。下面是小编给大家带来的高一数学必修1集合练习题,希望对你有帮助。
高一数学必修1集合练习题
一、选择题
1.下列各组对象能构成集合的有( )
①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学
A.1个 B.2个
C.3个 D.4个
【解析】 ①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.
【答案】 A
2.小于2的自然数集用列举法可以表示为( )
A.{0,1,2} B.{1}
C.{0,1} D.{1,2}
【解析】 小于2的自然数为0,1,应选C.
【答案】 C
3.下列各组集合,表示相等集合的是( )
①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.
A.① B.②
C.③ D.以上都不对
【解析】 ①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.
【答案】 B
4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为( )
A.2 B.2或4
C.4 D.0
【解析】 若a=2,则6-a=6-2=4∈A,符合要求;
若a=4,则6-a=6-4=2∈A,符合要求;
若a=6,则6-a=6-6=0∉A,不符合要求.
∴a=2或a=4.
【答案】 B
5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是( )
A.x≠0 B.x≠-1
C.x≠0且x≠-1 D.x≠0且x≠1
【解析】 由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.
【答案】 C
二、填空题
6.用符号“∈”或“∉”填空
(1)22________R,22________{x|x<7};
(2)3________{x|x=n2+1,n∈N+};
(3)(1,1)________{y|y=x2};
(1,1)________{(x,y)|y=x2}.
【解析】 (1)22∈R,而22=8>7,
∴22∉{x|x<7}.
(2)∵n2+1=3,
∴n=±2∉N+,
∴3∉{x|x=n2+1,n∈N+}.
(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,
故(1,1)∉{y|y=x2}.
集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,
∴(1,1)∈{(x,y)|y=x2}.
【答案】 (1)∈ ∉ (2)∉ (3)∉ ∈
7.已知集合C={x|63-x∈Z,x∈N},用列举法表示C=________.
【解析】 由题意知3-x=±1,±2,±3,±6,
∴x=0,-3,1,2,4,5,6,9.
又∵x∈N ,
∴C={1,2,4,5,6,9}.
【答案】 {1,2,4,5,6,9}
8.已知集合A={-2,4,x2-x},若6∈A,则x=________.
【解析】 由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.
【答案】 -2或3
三、解答题
9.选择适当的方法表示下列集合:
(1)绝对值不大于3的整数组成的集合;
(2)方程(3x-5)(x+2)=0的实数解组成的集合;
(3)一次函数y=x+6图像上所有点组成的集合.
【解】 (1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};
(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};
(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x+6}.
10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.
【解】 由-3∈A,得a-2=-3或2a2+5a=-3.
(1)若a-2=-3,则a=-1,
当a=-1时,2a2+5a=-3,
∴a=-1不符合题意.
(2)若2a2+5a=-3,则a=-1或-32.
当a=-32时,a-2=-72,符合题意;
当a=-1时,由(1)知,不符合题意.
综上可知,实数a的值为-32.
11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.
【解】 ∵2∈A,由题意可知,11-2=-1∈A;
由-1∈A可知,11-?-1?=12∈A;
由12∈A可知,11-12=2∈A.
故集合A中共有3个元素,它们分别是-1,12,2.
高一数学必修1集合知识点
集合的含义:
“集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。
所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。
集合的表示
通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。
高一数学学习方法
预习做得好,上课时可以更加轻松,做到胸有成竹。首先要浏览课本。很多学生认为数学课本不重要,只要会做题就行。其实不然,课本上展示的定理、概念、公式、推导过程是你理解和运用知识的关键,如果脱离这些知识,题目就成了无源之水、无本之木。一些概念中的限定词如“唯一”“在同一平面内”很重要,一些自诩为优秀生的同学往往因为眼高手低、不重基础而吃大亏。课本上的习题虽然简单,但是常常作为考试题变式原型出现,可能为命题者所用。因此,预习时,课本上的习题也要做一做。另外,要参考学案。这个学案可以是学校提供的,也可以是教辅用书。重视其中的典型例题、典型方法,如有不会的题目及时勾画、做标记,上课时针对自己不会的内容重点听。
课上效率要提高
首先,老师讲的方法要完全掌握,有不理解的,要记下关键步骤,课下抽时间回味。讲解的不同方法,要挑其中最简便、最适合自己的方法记忆理解,如果自己有不同的方法要勇敢地提出来,和老师、同学探讨。
其次,习题讲评课时不要只顾着抄老师板书的过程,那样是低效的。要明白老师的每一步是怎么来的,尤其是自己当时的瓶颈、自己错在何处。如果是计算出了问题,就要更加细心;如果是思路出了问题,就要仔细分析总结。
最后,课堂上要始终专心致志。哪怕是学到了最难的函数题和圆锥曲线题,也要自信从容、不畏困难;哪怕是上节课很多题目没听懂,也要勇敢放下,全身心地投入到这一节数学课中。
课下整理最关键
河南高考排名33370左右排位理科可以上哪些大学,具体能上什么大学
四川高考排名12630左右排位理科可以上哪些大学,具体能上什么大学
浙江水利水电学院在宁夏高考招生计划人数专业代码(2024参考)
湖南高考排名5760左右排位历史可以上哪些大学,具体能上什么大学
四川213分文科能上什么大学,2024年能上哪些大学
河南高考排名84770左右排位理科可以上哪些大学,具体能上什么大学
助听器销售年终总结怎么写?
社区科普实施方案四篇
文明社区创建活动方案四篇
开展“民族团结进步年”活动总结
社区科普实施方案四篇
文明社区创建活动方案四篇
最新个人年终述职报告优秀范文五篇
高三基督山伯爵满分作文1000字左右五篇
专题片疫情大考中国答卷观后感范文五篇
高中苏东坡传读后感作文范文五篇
广东高考排名43160左右排位物理可以上哪些大学,具体能上什么大学
陕西高考排名75330左右排位理科可以上哪些大学,具体能上什么大学
安徽高考排名115360左右排位理科可以上哪些大学,具体能上什么大学
湖北高考排名149180左右排位物理可以上哪些大学,具体能上什么大学
山西高考排名41950左右排位理科可以上哪些大学,具体能上什么大学
四川高考排名48760左右排位理科可以上哪些大学,具体能上什么大学
安徽高考排名18560左右排位文科可以上哪些大学,具体能上什么大学
武汉软件工程职业学院在江苏高考历年录戎数线(2024届参考)
贵州高考排名7300左右排位理科可以上哪些大学,具体能上什么大学
贵州高考排名105800左右排位文科可以上哪些大学,具体能上什么大学
南京科技职业学院在云南高考历年录戎数线(2024届参考)
吉林高考排名20460左右排位理科可以上哪些大学,具体能上什么大学
辽宁高考排名2070左右排位物理可以上哪些大学,具体能上什么大学
宿迁泽达职业技术学院在河北高考招生计划人数专业代码(2024参考)
湖南高考排名121470左右排位历史可以上哪些大学,具体能上什么大学
河南高考排名356760左右排位理科可以上哪些大学,具体能上什么大学
河北经贸大学在广西高考招生计划人数专业代码(2024参考)
考上海第二工业大学要多少分黑龙江考生 附2024录取名次和最低分
成都锦城学院在广西高考历年录戎数线(2024届参考)
重庆对外经贸学院和大连海洋大学哪个好 附对比和区别排名
高中基督山伯爵读后感作文范文7篇
高中文化苦旅读后感作文范文五篇
观看疫情大考中国答卷思政课专题片有感五篇
高中文化苦旅读后感作文800字范文7篇
六年级被破坏的环境800字作文五篇
社区厨艺大赛活动方案四篇
文明礼仪进社区活动方案四篇
终个人述职报告通用五篇
终述职报告个人最新五篇
老旧社区改造实施方案四篇
小区自行车棚改造方案四篇
文明社区的工作方案四篇
数学小论文 数学小论文范文五篇
社区治安建设方案四篇
社区厨艺活动方案四篇