河北五年级数学上册教案五篇

王明刚老师

河北五年级数学上册教案1

教学目标:

1、知识与技能:理解小数乘小数的计算方法,会笔算简单的小数乘小数的乘法。

2、过程与方法:结合具体事物,经历自主探索小数乘小数的的计算方法的过程。

3、情感态度与价值观:积极参加数学活动,培养迁移类推能力,获得借助计算器和运用自己的知识解决问题的成功体验。

教学重点:

掌握小数乘小数的方法,会熟练的进行笔算。掌握小数末尾的0的处理方法。

教学难点:

因数的小数位数与积的小数位数的关系。

教学准备:

多媒体课件

教学过程:

一、情境导入

1、师:同学们,如今我们的生活水平有了很大的提高,住房条件也有了很大的改善,很多同学都住进了新房,聪聪家最近也换了套新房,现在老师就带你们去看看。瞧!这就是聪聪家的客厅。(课件出示)

通过观察平面图,你想知道什么?能提出什么数学问题?

(设计意图:直接导入,课件展示聪聪家的客厅平面图,容易激发学生学习的兴趣,进而诱发学生主动解决问题的内驱力。)

2、生提问题。

3、师:同学们提出了很多有价值的问题。如果要求的聪聪家客厅的面积有多大,该怎样列式呢?(板书:4.8×3.6)观察算式的两个因数,你发现了什么?

生:算式的两个因数都是小数。

生:两个因数都是一位小数。

4、师:同学们观察的很仔细,今天我们就来探讨“小数乘小数的计算方法”。

板书课题:小数乘小数

(设计意图:从计算房间的面积这一实际问题引入,容易激发学生的学习兴趣。小数乘小数的重点是小数点的书写位置,让学生观察题中因数的特点,主要目的是为了确定积中小数的位数打基础。)

二、探究新知

1、推导笔算方法

①、提出估算要求,

师:计算之前我们先估算一下,聪聪家的客厅面积大约是多少平方米?让学生说一说自己是怎样想的?

生:把3.6看作4,把4.5看作5因此:3.6×4.8≈20 也就是说聪聪家客厅的面积不到20平方米。

(设计意图:培养学生估算的意识,使学生养成“先估算,在计算”的习惯,提高计算的正确率,未确定竖式计算结果做铺垫。)

②、提出竖式计算的要求,讨论两个因数都是一位小数怎么办?

回忆小数乘整数的计算方法。

提问:两个因数都是一位小数怎么计算?可以转换成整数乘法来计算吗?

让学生说出算理,独立试一试,指名汇报答案。学生上台板演。

确定积的小数点的位置,并说明理由。

(设计意图:“问题讨论”是学生把已有的知识迁移到新知识的过程,是理解算理的过程,是发展学生教学思维的过程。)

③、分析算理。

我们一起在原式上做一做。(边说边板书)。

思考

乘数中的两个因数是如何转化成整数计算的?

用整数相乘的方法算出48×36的积以后怎么办?

要得到原来的积,应该怎么办?

小数点应该点到哪里呢?

教师小结:两个因数都乘10后,得到的数就等于原来的积乘100,要求原来的积,就要反过来把1728除以100,从积的右边起数出两位点上小数点。所以3.6×4.8的积是两位小数。

④(教师出示课件),显示算理的全过程。指名学生结合竖式,再次说出小数乘小数的计算方法,

(设计意图:让学生经历用竖式计算方法的形成过程,掌握计算方法。)

2、沙发的占地面积,

①提出问题:刚才我们求出了聪聪家客厅的面积,聪聪家的客厅里还有一个漂亮的沙发,(出示课件)生观察图,说出了解到的信息和要解决的问题。

②师:求沙发的占地面积是多少平方米,该怎样列式呢?

学生可能说出不同的算式,教师肯定并板书。

0.85×1.8 师:同学们看一看这个算式的两个因数,你发现了什么?

生:这个算式中的两个因数都是小数。

生:两个因数一个是一位小数,一个是两位小数。

(设计意图:了解题中的数据信息和问题,列出算式,了解因数的特点,为竖式计算做准备)

③师:这样的两个小数相乘,用竖式计算怎样算呢?(教师强调小数乘法列竖式是不要把小数点对齐,要把因数的末尾数对齐。)

教师板书竖式

生:学生试算,指名学生到黑板上板演,并让板演的同学说一说自己计算的方法。

学生完成板书

师:用整数乘法的方法计算出积以后怎么办?

生:回答,师在竖式中点上小数点。

师:告诉学生在横式中写得数时,根据小数的基本性质,小数末尾的0可以不写。

完成横式

0.85×1.8=1.53(平方米)

④师:(出示课件)再次显示小数乘法的计算方法与过程。

(设计意图:让学生自己尝试计算,既检验学生掌握计算方法的程度,用便于解决计算中数学问题,提高学习效率。)

⑤师:用竖式算的对不对呢?请同学们用计算器检验一下。

学生计算交流。

(设计意图:通过自己检验计算结果,确信计算方法的正确性)

三、归纳总结

让学生观察两个竖式,说一说因数和积的小数位数有什么关系,使学生了解:两个因数一共有几位小数,积就有几位小数。师生共同总结归纳小数乘小数的计算方法。

出示问题:观察比较,总结算法。

1、例题中的两个因数分别是几位小数?积是几位小数?

2、通过比较,你发现上面两题中两个因数与积的小数位数有什么关系?

3、你知道计算小数乘小数时,要先干什么,后干什么吗?小数点的位置是如何确定的?

师总结算法:小数与小数相乘,先按照整数乘法的算法求出积,再看因数中一共有几位小数,就从积的右边数出几位,点上小数点。(课件播放)

(设计意图:在观察、讨论的过程中,发展学生的数学思维,经历有个性的经验提升为数学方法的过程。)

师:观察的很认真。知道了两个因数和积中小数位数的这种关系,在计算小数乘法时,根据这种关系,我们不计算,就能判断积的小数位数。

四、尝试应用

1、聪聪家的客厅里还有一个漂亮的茶几,(出示课件)生观察图,说出了解到的信息和要解决的问题。

师:求茶几的占地面积是多少平方米,该怎样列式呢?

学生说,教师板书:0.45×0.9= 师:估计一下,0.45×0.9的积有几位小数?为什么?

生:三位。因为两个因数一共有三位小数,所以它们的积也一定是三位小数。

师:请同学们试着用竖式计算。

学生自主笔算,教师巡视,个别指导。请一名好学生板演。请板演的同学说一说确定小数点时是怎样想的。

生:先用整数相乘的方法算出45×9等于405。因为两个因数一共有三位小数,所以,也要从405的右边开始数出三位,405正好是三位,就在4的前面点上小数点,整数部分写0。

(设计意图:让学生用已有的知识尝试解决问题,先估计积有几位小数,为自主计算打基础。让好学生板演,减少教师板书的时间,提高学习效率。)

2、师:说的很好,下面我来考考你们。

出示“试一试”,先让学生说一说怎样确定小数点的位置,再自己试写。交流时,让学生说一说怎样想的。

师:下面我们一起来看“试一试”,根据126×12=1512,直接写出下面各题的积。你知道怎样确定小数点的位置吗?

生:看两个因数一共有几位小数。

(设计意图:让学生在练习中熟练应用并巩固因数中小数位数与积的小数位数的关系。)

五、全课小结

通过今天这节课的学习,你有什么收获?

河北五年级数学上册教案2

教材内容:

《解简易方程》是九年义务教育中六年制小学数学教材第九册第四单元第二节内容。

教材简析:

本节课的主要内容是方程的定义,方程的性质和利用方程性质解方程。

从知识结构上看:本节课是在学生学习了一定的算术知识(如整数,小数的四则运算及其应用),已初步接触了一些代数知识(如用字母表示数及其运算定律)的基础上,进一步学习的关键。本节课的内容又为后面学习解方程和列方程解应用题做准备。这为过渡到下节的学习起着铺垫作用。

从认知结构上看:本节课在初等代数中占有重要地位,中学生在学习代数的整个过程中,几乎都要接触这方面的知识,是教材中必不可少的组成部分,是一个非常重要的基础知识,所以它又是本章的重点内容之一。

教学目标:

(1)知识目标:根据等式的性质,使学生初步掌握解方程及检验的方法,并理解解方程及方程的解的概念。

(2)能力目标:培养学生的分析能力应用所学知识解决实际问题的能力,掌握解方程的一般步骤,会解简单的方程。

(3)情感目标:通过教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。帮助学生养成自觉检验的学习习惯,培养学生的分析能力和应用能力,渗透代数的数学思想和方法。

教学重点:

根据上面的分析不难看出《解简易方程》这节课在整个教材中将起到承上启下的作用,特别是利用方程性质解未知数,它是后续知识发展的起点,学生对未知数的理解对今后一元一次方程,一元二次方程的学习起着决定作用,另一方面,对于学生来说,弄清方程和等式的异同,正确设未知数,找出等量关系是很困难的所以我认为这节课的重点及难点是:理解方程的解和解方程的含义和掌握解方程的方法。

教学学情:

大部分学生对数学学习的积极性比较高,能从已有的知识和经验出发获取知识,抽象思维水平有了一定的发展。 基础知识掌握牢固,具备了一定的学习数学的能力。在课堂上能积极主动地参与学习过程,具有观察、分析、自学、表达、操作、与人合作等一般能力,在小组合作中,同学之间会交流合作,自主探讨。 但有个别学生基础知识差, 上课不认真听讲,不能自觉的完成学习任务,需要老师督促并辅导。

教法学法:

在教学中,学生往往更习惯运用算术方法解题,这是因为他们之前长期用算术的思路思考问题,再学列方程时,往往会受到干扰。因此在教学中要注意过渡和对比,克服干扰,多让学生体会列方程解题的优越性。而在整节课的设计上,我想着重突出这么几点。

1、通过创设有效的情境串,激发学生兴趣,调动学生积极性,引发学生的数学思考,帮助学生突破重点、难点。根据题目中信息的叙述方式,通过顺向思考列出数量关系。由于是刚接触方程,列出文字性的数量关系对于学生正确地列出方程是很重要的。

2、坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。借助小组合作、自主探究等形式,因势利导、适时调控、努力营造师生互动、生动活泼的课堂氛围,实现预设的教学目标。

教学过程:

一、。复习铺垫

(1)抛出问题

师:同学们我们上节课学了方程的意义,你还记得什么叫方程吗?

(生:含有未知数的等式叫方程。)

【设计意图】让学生回忆旧知识,巩固旧知识,引出方的解、解方程的定义。结合引导复习的方法,激发学生的学习兴趣。

(2)判断下面哪些是方程

师:你能判断下面哪些是方程吗?

(1)a+24=73 (2)4x<36+17 (3)234÷a>12

(4)72=x+16 (5)x+85 (6)25÷y=0.6

(生:1、4、6是方程。)

师:说说你的理由?

(生:它含有未知数,而且是等式)

【设计意图】在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式教法,课堂讨论法。巩固方程的性质,承接后面利用方程的性质解方程的应用。

二、探究新知

1、方程的解和解方程

(1)看图写方程

师:说的真好,那么请同学观察这幅图(P57主题图)从图中你知道了什么?

(生:我知道杯子重100克,水重X克,合起来是250克。)

师:你能根据这幅图列出方程吗?

生:100+X=250.(板书)

【设计意图】运用知识迁移,结合直观图例,应用方程的性质,让学生自主探索列出方程。

(2)求方程中的未知数

师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?(交流后汇报)

学生可能出现的回答

生1:根据加减法之间的关系250-100=150,所以X=150.

生2:根据数的组成100+150=250,所以X=150.

生3:100+X=250=100+150,所以X=150.

生4:假如在方程左右两边同时减去100,那么也可得出X=150.……

【设计意图】这样的提问,有多种回答,锻炼学生的发散性思维,有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。

(3)验证方程中的未知数,引出方程的解和解方程两个概念。

师:同学们用不同的方法算出X=150,那么它对不对呢?

生:对,因为X=150时方程左边和右边相等。

师:这时我们说“x=150”是方程“100+X=250”的解,刚才我们求X的过程就叫做叫解方程。(板书:方程的解、解方程)请同学在书中找到这两个概念(使方程左右两边相等的未知数的值叫做方程的解,解出方程的解的过程叫解方程。)并齐读。

【设计意图】学生齐读的时候,把解方程和方程的解的概念板书在黑板上,并且在学生读的过程中学生可以加深印象。

(4)辨析方程的解和解方程两个概念

师:你们能说出 “方程的解”和“解方程”有什么区别么?讨论一下,然后汇报。

生:方程的解是未知数的值,它是一个数,而解方程是求未知数的过程,是一个计算过程,它的目的是求出方程的解。

【设计意图】通过组内交流,让学生自己总结出“方程的解”和“解方程”的区别,提高学生总结归纳的能力和小组合作精神。

2、例1解析

师:(出示例1图)图上画的是什么?你能列出方程吗?

生:x+3=9(板书:x+3=9)

(1)引导学生思考怎样解方程。

师:怎样解这个方程?我们可以借助天平(电脑显示)

师:我们解方程的目的是求想x,怎样使天平一边只剩x呢?

生:天平两边同时减去3个球。(电脑显示)

师:天平两边还平衡吗?怎样反映在方程上呢?

生:方程两边同时减3。(结合学生回答板书)

师:为什么同时减3而不是其它数呢?

生:方程两边同时减3就可以使方程一边只剩x。

(2)检验方程的解。

师:X=6是不是方程的解呢?

生:是,因为X=6使方程左边是6+3=9,右边是9,左右两边相等,所以X=6是方程X+3=9的解。

师:以后解方程时,我们要养成检验的习惯,力求计算准确。

【设计意图】自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。

(3)强调解方程的格式步骤

解方程要注意:(1)先写“解”,等号要对齐。

(2)做完后要注意检验。

【设计意图】再一次强调,可以让学生加深印象,掌握解方程的正确格式和步骤,再今后的解题中不会出现格式错误的问题。

3、巩固练习

师:你会学老师这样解方程吗?

请同学们解方程x+3.2=4.6, x+19=30。

先独立完成,再招学生板书练习集体订正

【设计意图】在理解例1的解法后再完成本题,巩固对同种题型解题方法的认知,使学生对知识掌握的更牢固。

4、小组讨论怎样解方程x-2=15,x-1.8=4

师:刚才的题同学们都做的非常好,那么下面的题你们会解么?(出示题目:x-2=15,x-1.8=4)请同学们小组讨论怎样解方程x-2=15,x-1.8=4并说出你这样做的根据。

学生小组讨论并解出上面两道方程,并板书、汇报自己的解题过程。

师:在这个过程中哪些是解方程,哪些是方程的解。

生:我们计算的过程是解方程,而x=17和x=5.8是方程的解。

【设计意图】通过学生自主学习探究出不同类型方程的解法,让学生享受到自学的乐趣,明白解这类方程就是要在方程的左右两边同时加上或者减去一个相同的数,让方程的左右两边仍然相等。与此同时再复习巩固下方程的解和解方程的概念。

三、实践应用。

1、填空

(1)含有( )的( )叫方程。

(2)使方程左右两边相等的( )叫方程的解。

(3)求( )叫做解方程。

(4)x-15=20 这个方程的解是( )

指名学生口头回答。

2、解下列方程

x+0.3=1.8 x-1.5=4

x-6=7.6 x+5=32

学生独立完成并集体订正。

3、列方程解决问题

学生独立列方程解答,集体订正。

【设计意图】巩固本节课所学习的内容,检查学生的掌握情况。

四、全课小结。

师:这节课你有什么收获?

课后请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。

河北五年级数学上册教案3

教学目标:

1.通过解决简单的实际问题,理解分数加、减法的意义,以及同分母分数加减法的算理。

2.在探索异分母分数加减法的计算方法的过程中,感受转化的数学思想。

3.利用已有的认知基础,提高估算意识和分析概括的能力。

4.在探究过程中体验成功的喜悦,激发积极参与数学学习活动的兴趣,。

教学重点:

探究异分母分数加减法的计算方法。

教学难点:

异分母分数加减法转化为同分母分数加减法的探索过程。

教具学具:

多媒体课件、练习题纸。

教学过程:

一、课前交流

二、复习引入

师:老师伸出一个手指头,可以用什么数表示?两个手指头呢?如果要把这两个数合并起来,算式怎么写?(板书:1+2=3)

师:接下来老师还是伸出一个手指头,除了1以外,你还可以用什么数表示?生:1/5。(师:谁明白他意思?他是怎么想的?)两个手指头呢?(板书:1/5 2/5)

师:大家能比较出这两个分数的相同点和不同点吗?

三、新课教学

(一)同分母分数

1.设疑。

师:如果把这两个分数也合并起来,结果是多少?肯定吗?可我上二年级的女儿不这样认为?她认为是3/10(板书),而且她振振有词地找到了理由,你们和我一起做一做,左手用1个手指表示1/5,右手用两个手指头表示2/5,合起来3/10。

2.解惑。

师:究竟谁的对?请说明理由。

师:谁来解释一下我女儿的问题出在哪儿?

师:对,在学习分数的时候,我们一定要关注单位“1”。实际上我们得到的不是3个1/10,而是3个1/5,所以结果等于3/5。(板书)

3.明理。

师:这个例子说明在做这类题目的时候,我们应该注意什么?

引导学生明白它们的分数单位没有发生变化,相加的只是分数单位的个数。

师:1+2=3与1/5+2/5=3/5有联系吗?想一想它们的算理一样吗?

师:对,它们的算理是一样的,只是计数单位发生了变化而已。

4.应用。

师:有了这种认识,这两个题目一定不成问题,谁能迅速说出答案?

师:说说你是怎么想的?在计算8/9-5/9时,你想到了哪个算式?你能用8-5=3解释这个算式吗?

5.总结。

师:观察一下我们做过的几个题目,有什么显着的特点?(板书:同分母)

师:你能总结出计算这类分数加减法的方法吗?(课件)

6.揭题。

师:这节课,我们就一起来深入研究分数加减法的计算方法。(板书课题)我们一起把这句话读一遍。

(二)异分母分数

1.承上启下。

师:我们再来看看这两个得数:3/6和3/9,我们还应该对它们作进一步的处理,谁能明白老师的意图?对在计算分数加减法时,不是最简分数的要化成最简分数。

引导学生约分。

师:约分后得到两个最简分数1/2和1/3,(板书)如果只让大家找它们的不同之处,你能找到哪些?

引导学生找出它们的意义、大小、分数单位、分母不相同(板书:异分母)等。

2.提出问题。

师:如果老师要把这两个意义不同、大小不同,分数单位也不相同的异分母分数也合并起来,我想除少数同学以外,绝大多数同学一定感到为难,实话实说,有没有这样的感觉?

师:如果老师允许你们改写这个算式,而且想怎么改就怎么改,直到你会做为止,你想怎么改?

3.明确方向。

师:从我们听取这些想法中,我发现一个共同的倾向,把它改成分母一样的算式就简单了,我们从这些同学的想法中能得到什么启示呢?

4.转化学习。

师:是呀!我们可不可以在不改变这两个分数大小的情况下,把它们的分母统一起来吗?请大家在草稿纸上试一试。

(1)学生尝试,教师巡视。

(2)板书讲解。

(3)课件展示。

师:我们也可以这样来理解,用同样大小的两个圆分别表示出1/2和1/3,为什么这两个分数的分子不能直接相加呢?

师:即使我们简单的把这两份合在一起,我们也不能准确的说出它究竟占了这个圆的几分之几,因此,只有通过通分的方法,把这两个分数细化为3/6和2/6,从而得出它们的结果是5/6。

(4)归纳方法。

师:如果让你用一句话高度概括出异分母分数加减法的计算方法,你准备怎么归纳?

(三)总结方法并介绍数学文化

师:我们一起来总结一下我们的学习过程,我们在学习异分母分数加减法时,是以什么作为基础的?我们又是用什么方法转化成同分母分数的呢?那同分母分数加减法又是以什么作为基础的呢?

师:实际上,我们是用层层转化的思想,把新知识转化成已知的旧知识来学习的,转化是学习数学学习一种重要的方法,可以使新知识更为简单易懂,你们现在觉得分数加减法简单吗?

师:让你们不可思议的是,这个简单的知识曾令欧洲人十分头痛,德语有句古老的谚语:"掉进分数里去了。"就是指说一个人遇到困难时束手无策的尴尬处境。这句话是怎样产生的呢?(课件)

师:今天,我们走进了分数的世界,却并没有“掉进分数里去”,轻而易举的学会了分数加减法的计算方法。这是因为我们勤于思考、善于总结,掌握了科学的学习方法,老师的观点是:只要愿意思考,办法总会有的。还是那句广告言“没有做不到,只有想不到。”如果老师让你们自己去解决分数问题,你们会“掉进分数里去”吗?

四、巩固练习

1.算一算。

2.选一选。

3.比一比。

4.填一填。

五、拓展提高

师:课前交流时,我们谈到了一个古老的数学问题,我们回过头再来看一看。想一想,有没有办法让三个儿子在不破坏规定的前提下继承到父亲的遗产呢?这办法还真有。(课件)

师:现在能明白其中的道理吗?其实,这位农夫在设计遗嘱时,是把18作为单位“1”,而他只留下了17头牛,是18头牛的17/18,而三兄弟的分牛的份额17/18刚才一样,只不过在分年是我们要以18作为单位“1”,没不是用17作为单位“1”。

六、总结全课

河北五年级数学上册教案4

教学目标:

1、理解实际问题中有关和、差、倍的数量关系;

2、学会设未知数,列形如ax±b=c的方程,解决实际问题。

3、让学生体会列方程解决问题的优越性,掌握列方程解决问题的基本步骤;

4、引导学生根据问题的特点,灵活选择较简洁的算法,进而在提高解决问题的同时,培养学生思维的灵活性。

教学重点:教会学生用方程解决实际问题,学习形如ax±b=c的方程;

教学难点:分析、找出数量间的相等关系,正确列出方程;

教学过程:

一、准备:

1、口答下列方程的解是多少?

y-20=4 2x=24 a+4=7 15=3x

说说你解方程的思路?

2、说说各题中的等量关系,并列出带有未知数的方程式:

①母鸡有30只,是公鸡的2倍。公鸡有几只?

②甲数是17,是乙数的2倍。乙数是多少?

③ 足球上的白色皮共20块,是黑色皮的2倍。黑色皮有几块?

二、导入例题并教学例1

对题目进行改编,添加条件导出例1:

①足球上的白色皮共20块,比黑皮的2倍少4块。黑色皮有几块?

对这个题目的改编就是我们今天要学习的《稍复杂的方程》。

1、题中的等量关系是什么呢?

(学生分析:白皮块数与黑皮块数之间是一个什么样的关系呢?)黑皮块数×2-4=20 黑皮块数×2-20=4

2、怎样根据关系式列方程呢?

3、小组讨论怎样解答?

4、小组汇报解复杂方程的基本步骤:

①找出题中选题关系; ②写出“解、设”;

③列方程、解方程; ④检验;

三、反馈练习:

①母鸡有30只,比公鸡的2倍少6只。公鸡有几只?

②甲数是17,比乙数的2倍多5。乙数是多少?

3、讨论:小组合作怎样解决这个数学问题?

4、还能用不同的方程解答吗?

四、小结:你学会了什么?

河北五年级数学上册教案5

教学目标

1、理解分数、小数互相转化的必要性,掌握分数和小数互化计算的方法。

2、能正确地将简单的分数化为有限小数,并能在解决实际问题时灵活运用。

3、通过对规律的猜想、验证和总结建立事物相互联系相互转化的辩证唯物主义观点。

教学过程:

(一)创设情境,自主探索

1、在比较中认识互化的必要性

师(课件出示课本情境图):请观察图表,说一说图的意义。

(在学生说的过程中,板书:林林0.4(小时);明明1/4(小时))

师:请同学们比一比,谁用的时间多一些?

(在比较时,可以先让学生估计,然后再精确比较)

生1:我们小组是把小时化成分钟来比较的。小数化成分数来比较大小的。0.4小时是24分钟,1/4小时是15分钟,所以林林用的时间多一些。

生2:我们小组用画图的方法来比较的。我画了10个同样的小格,0.4涂4格,而只涂2格半,所以林林用的时间多一些。

生3:我们小组也是用画图的方法来比较的。我画了100个同样的小格,0.4能涂40格,而只涂25格,所以林林用的时间多一些。

生4:我们小组把小数化成分数的方法来比较的。0.4是4个1/10,也就是4/10,约分后是2/5,大于1/4,所以林林用的时间多一些。

生5:我们小组把分数化成小数的方法来比较的。1/4=1÷4=0.25,0.4>0.25,所以林林用的时间多一些。

师:你们最喜欢哪种方案,为什么?

生1:我喜欢分数化成小数那个小组的方案。因为画图太麻烦了,而分数化成小数,直接用分数的分子除以分母就可以了。

生2:我喜欢小数化成分数的那个小组的方案。分数化小数有的时候除不尽很麻烦,画图也很麻烦,比较时间能化成分钟来比,如果其它单位的还得又一种化法。所以我喜欢把小数化成分数的方案。

生3:把小数化成分数再比较大小,分母不同的时候还得通分,也很麻烦,还不如具体问题具体分析。

......

师(小结):同学们回答的都很好,在我们的日常生活和进一步的学习中,常会遇到一些比较分数、小数大小的实际问题和分数、小数的混合运算。为了便于比较和计算,就需要把分数化成小数,或者把小数化成分数。

2、探索分数化小数

师:谁来说一说第5小组是用什么方法把分数化成小数的?

生:用分子除以分母的方法。

师:你是怎么想到用分子除以分母的方法化成小数的?

生:因为分数的分子相当于被除数,而分母相当于除数。

师:请你把71页“试一试”第2题这几个分数化成小数。

(学生独立解答,教师巡视指导。)

3、探索小数化分数的基本方法

师:老师问一下第4小组的同学,你们是用什么方法把小数化成分数的?

生:我们是根据小数的意义把小数化成分数的。

师:能具体的说一说吗?

生:0.4是4个十分之一,也就是十分之四,约分后是五分之二。

师:那0.04,0.004呢?

生:0.04是4个百分之一,也就是百分之四,约分后是二十五分之一;0.004是4个千分之一,也就是千分之四,约分后是二百五十分之一。

师:说的真不错,化成分数后,能约分的要约分,一直约分成最简分数。

师:请观察化简前的分数,分母与小数有什么关系?有没有规律?

(学生分小组讨论,汇报。)

生1:小数的位数与分母1后面的零的个数一样多。

生2:原来有几位小数,就在1后面写几个零作分母。

师:请再观察分子与小数有什么关系?

生:原来的小数去掉小数点后的数作分子,

师:请按照找出来的规律,把课本第71页“试一试”的第1题做到练习本上。

(二)练习提高

1、课本第72页练一练第1题,分数化小数。

2、判断是否正确,如果不对,请改正。

3、数学游戏:你说我答:同桌之间一个说分数一个说小数,互相交换着说。

(让学生熟记一些常用的分数与小数互化的结果)

4、比较各组数的大小(主要是对分数和小数的互化进行练习)。

5、在直线上面的括号里填上适当的分数,在下面的括号里填上适当的小数。

(三)小结延伸

师:本节课的学习你有哪些收获?

(四)实践活动

在生活中寻找用分数或小数表示的信息。

五、教学反思