大学物理《弦振动》实验报告
(报告内容:目的、仪器装置、简单原理、数据记录及结果分析等)
一.实验目的
1.观察弦上形成的驻波
2.学习用双踪示波器观察弦振动的波形
3.验证弦振动的共振频率与弦长、张力、线密度及波腹数的关系
二.实验仪器
XY弦音计、双踪示波器、水平尺
三 实验原理
当弦上某一小段受到外力拨动时便向横向移动,这时弦上的张力将使这小段恢复到平衡位置,但是弦上每一小段由于都具有惯性,所以到达平衡位置时并不立即停止运动,而是继续向相反方向运动,然后由于弦的张力和惯性使这一小段又向原来的方向移动,这样循环下去,此小段便作横向振动,这振动又以一定的速度沿整条弦传播而形成横波。 理论和实验证明,波在弦上传播的速度可由下式表示:
=
ρ
1
------------------------------------------------------- ①
另外一方面,波的传播速度v和波长λ及频率γ之间的关系是:
v=λγ-------------------------------------------------------- ②
将②代入①中得 γ
=λ1
-------------------------------------------------------③ ρ1
又有L=n*λ/2 或λ=2*L/n代入③得 γ
n=2L
------------------------------------------------------ ④ ρ1
四 实验内容和步骤
1.研究γ和n的关系
①选择5根弦中的一根并将其有黄铜定位柱的一端置于张力杠杆的槽内,另一端固定在张力杠杆水平调节旋钮的螺钉上。
②设置两个弦码间的距离为60.00cm,置驱动线圈距离一个弦码大约5.00cm的位置上,将接受线圈放在两弦码中间。将弦音计信号发生器和驱动线圈及示波器相连接,将接受线圈和示波器相连接。
③将1kg砝码悬挂于张力杠杆第一个槽内,调节张力杠杆水平调节旋钮是张力杠杆水平(张力杠杆水平是根据悬挂物的质量精确确定,弦的张力的必要条件,如果在张力杠杆的第一个槽内挂质量为m的砝码,则弦的张力T=mg,这里g是重力加速度;若砝码挂在第二个槽,则T=2mg;若砝码挂在第三个槽,则T=3mg…….) ④置示波器各个开关及旋钮于适当位置,由信号发生器的信号出发示波器,在示波器上同时显示接收器接受的'信号及驱动信号两个波形,缓慢的增加驱动频率,边听弦音计的声音边观察示波器上探测信号幅度的增大,当接近共振时信号波形振幅突然增大,达到共振时示波器现实的波形是清晰稳定的振幅最大的正弦波,这时应看到弦的震动并听到弦振动引发的声音最大,若看不到弦的振动或者听不到声音,可以稍增大驱动的振幅(调节“输出调节”按钮)或改变接受线圈的位置再试,若波形失真,可稍减少驱动信号的振幅,测定记录n=1时的共振频率,继续增大驱动信号频率,测定并记录n=2,3,4,5时的共振频率,做γn图线,导出γ和n的关系。
2.研究γ和T的关系 保持L=60.00cm,ρ
1保持不变,将1kg的砝码依次挂在第1、2、3、4、5槽内,测出n=1
时的各共振频率。计算lg r 和lgT,以lg2为纵轴,lgT为横轴作图,由此导出r和T的关系。
3.验证驻波公式
根据上述实验结果写出弦振动的共振频率γ与张力T、线密度ρ关系,验证驻波公式。
1、弦长l1、波腹数n的
五 数据记录及处理
1.实验内容1-2 数据 T=1mg ρ1=5.972 kg/m
数据处理:
由matlab求得平均数以及标准差 1.平均数 x1=117.5600 2.标准差 σx=63.8474
最小二乘法拟合结果: Linear model Poly1:f(x) = p1*x + p2
Coefficients (with 95% confidence bounds): p1 = 40.38 (39.97, 40.79) p2 = -3.58 (-4.953, -2.207)
Goodness of fit:SSE: 0.508R-square: 1
Adjusted R-square: 1RMSE: 0.4115
此结果中R-square: 1 Adjusted R-square: 1说明,此次数据没有异常点,并且这次实验数据n与γ关系非常接近线性关系,并可以得出结论:n与γ呈正比。
2.实验内容 3.4数据
1.平均数 x1= 62.2000 2.标准差 σx=308.2850
最小二乘法拟合结果: Linear model Poly1:f(x) = p1*x + p2
Coefficients (with 95% confidence bounds): p1 =0.4902 (0.4467, 0.5336) p2 = 1.574 (1.553, 1.595) Goodness of fit:SSE: 0.0001705R-square: 0.9977
Adjusted R-square: 0.9969RMSE: 0.007539
由分析可知,此次数据中并没有异常点,并且进行线性拟合后R-square: 0.9977 Adjusted R-square: 0.9969,因为都极其接近1,所以说此次拟合进行的非常成功,由此我们可以得出相应的结论:lgT与lgγ是线性关系。
六.结论
验证了弦振动的共振频率与张力是线性关系
也验证了弦振动的共振频率与波腹数是线性关系。
七.误差分析
在γ和n关系的实验中,判断是否接近共振时,会有一些误差,而且因为有外界风力等不可避免因素,所以可能会有较小误差。
在γ与T实验中,由于摩擦力,弦不是处于完全水平等可能产生较小的误差。
附录(Matlab代码)
%%实验1 %一
A=[1 37.2 2 76.9 3 117.1 4 158.1 5 198.5];
p1=mean(A(:,2)); %平均数 q1=sqrt(var(A(:,2))); %标准差
figure
plot(A(:,1),A(:,2),'o') hold on lsline
xlabel('n 波腹数');
ylabel('γ(Hz) 频率');title('γ和n的关系');
[k b]=polyfit(A(:,1),A(:,2),1);%拟合直线
%二
% T(kg) LgT(kg) γ(Hz) Lgγ(Hz) B=[1 0.00 37.2 1.57 2 0.3 53.6 1.73 3 0.48 65.0 1.81 4 0.60 72.5 1.86 5 0.70 82.7 1.92];
x=B(:,1); y=B(:,3);
figure
loglog(x,y) %x,y 都为对数坐标 plot(B(:,2),B(:,4),'o') hold on lsline
xlabel('T 拉力');
ylabel('γ(Hz) 频率'); title('γ和T的关系')
河南高考排名243480左右排位理科可以上哪些大学,具体能上什么大学
广西高考排名212400左右排位理科可以上哪些大学,具体能上什么大学
广东高考排名85850左右排位物理可以上哪些大学,具体能上什么大学
陕西高考排名150120左右排位理科可以上哪些大学,具体能上什么大学
福建高考排名3220左右排位历史可以上哪些大学,具体能上什么大学
河北高考排名114880左右排位物理可以上哪些大学,具体能上什么大学
土木测量的实习报告合集四篇
业务实习报告三篇
中国平安保险实习报告
关于试用期满转正述职报告
社区工作述职报告范文(精选五篇)
公交公司经营管理员辞职报告简短
投资促进局到银控公司考察报告2篇
工程技术部述职报告
在幼儿园的暑假工作实践报告范文
大学生消费状况调查报告模板
重庆高考排名14250左右排位历史可以上哪些大学,具体能上什么大学
河北高考排名141780左右排位历史可以上哪些大学,具体能上什么大学
贵州高考排名122910左右排位文科可以上哪些大学,具体能上什么大学
河南高考排名13840左右排位文科可以上哪些大学,具体能上什么大学
四川电影电视学院和沈阳大学哪个好 附对比和区别排名
考浙江东方职业技术学院要多少分山西考生 附2024录取名次和最低分
云南高考排名44990左右排位理科可以上哪些大学,具体能上什么大学
黑龙江高考排名95680左右排位理科可以上哪些大学,具体能上什么大学
安徽高考排名91690左右排位理科可以上哪些大学,具体能上什么大学
岳阳职业技术学院的医学检验技术专业排名怎么样 附历年录戎数线
文山学院和韶关学院哪个好 附对比和区别排名
海南高考排名4000左右排位综合可以上哪些大学,具体能上什么大学
沈阳科技学院和广州软件学院哪个好 附对比和区别排名
重庆交通大学的能源与动力工程专业排名怎么样 附历年录戎数线
山东高考排名438500左右排位综合可以上哪些大学,具体能上什么大学
广东高考排名49880左右排位物理可以上哪些大学,具体能上什么大学
辽宁财贸学院和新疆农业大学哪个好 附对比和区别排名
青海高考排名16830左右排位理科可以上哪些大学,具体能上什么大学
广东高考排名224680左右排位物理可以上哪些大学,具体能上什么大学
皖西学院和山西中医药大学哪个好 附对比和区别排名
语文教师学期述职报告范文
语言类实习报告汇总六篇
关于美丽家乡的社会实践报告
客服主管岗位竞聘报告(客服主管岗位竞聘报告优秀范文)
物流公司员工年终述职报告
学校校长年度述职报告范文(通用五篇)
中国农村调查报告12篇
收银组长的述职报告
机电专业实践实习报告
精选市场调查报告模板合集10篇
综评个人陈述报告(通用五篇)
公司出纳年度的个人述职报告
暑期教师培训的报告发言
有关调查报告小学作文六篇
有关留守儿童调查报告9篇