我在想,为什么我们要学习数学?也许这个问题成年人有一万个答案,可是当我们第一次走进教室,学习数学的时候,大概率还是个孩子,你怎么跟一个孩子解释为什么要学习数学呢?我把这个问题抛给了一个朋友,他说:“为了提高思维逻辑能力,这是我初中老师在第一节数学课上告诉我们的”。或者一位5岁的小朋友又会问:“什么是逻辑能力呢?”
也许从出生第一天,我们就一直在被动的接收一些东西,父母的劝导,老师的传授,可5岁的孩子还是会把玩具散落一地,6岁的孩子仍然会因为父母不给买玩具而嗷嗷大哭,无论你怎么劝导一个人,怎么劝诫一个人,他可能仍然会犯你认为会出现的错误。我记得有位教育专家这么说:“你告诉宝宝他把玩具弄坏了,就等于丢了10个棒棒糖”,从此以后这个宝宝可能会更加珍惜玩具。这个方法很简单,但是貌似最有效。数学是什么?数学不就是把复杂的东西简单化么?
现在我们再回答前面的问题:为什么我要学习数学?我们可以这么跟5岁的小朋友说:“妈妈给你10元钱,让你买酱油,酱油7元、棒棒糖1元一个,剩下的钱你可以买几个棒棒糖?”或许想吃棒棒糖的就会苦思冥想一番,或许未来妈妈真的给他10元钱去买酱油,结果回来就变成了一瓶酱油和3个棒棒糖。或者再过一段时间,这位小朋友会选择6元的酱油,因为可以获得4个棒棒糖了。他这么计算着:7+3和6+4都可以等于10,那么如果要必须买酱油的情况下,1+9也可以等于10。我们都知道也有1元的袋装酱油,于是9个棒棒糖到手了。任何知识的魅力都在于自我的发现,只有你对它产生了无限的兴趣,你就会不断的发现它的美,《数学之美》也可以变成《物理之美》。
有些人会说,上面的例子是利益驱动型,不是兴趣驱动型,对于一个孩子来说,你能指望他向成人那样:“我需要的不是物质世界,我需要的是精神世界?”。5岁宝宝最喜欢做得事情就是在吃和玩上面,请问,成年人不也是如此么?这就是天性。只不过成年人的自控能力足够大罢了。
我们回到书本上,这本书是否合适自己?如果没有专业的数学知识,很难读懂。但是它又有着无限的魅力,让你不自觉的读下去,为什么?因为“数学之美”,虽然大多数人看不懂里面的公式,但是能够明白数学能解决的问题:概率统计学能够解决自然语言处理、布尔代数能解决搜索引擎的问题、有限状态机和动态规划能解决地图问题、向量+特征向量+余弦定理能解决自动新闻分类问题、最大熵模型解决金融问题,看着看着我就莫名的产生了一种想要学习算法的冲动,这不就是本书的意义所在么?
最后,我推荐几个章节希望有兴趣的读者可以关注下:
1.信息指纹,可以让复杂的数据用简单的一串数字存储
2.13章,提到的简单之美。当然之后多次提到
3.余弦定理(通过向量+特征向量+余弦定理)可以判断两条数据的相似性
4.17章,简单密码学(对密码感兴趣的可以看看)
5.布隆过滤器,用很少的空间存储大量的数据,从而解决黑名单的问题(黑名单数据量庞大的时候,会增加判断某一个名单是否出现过的难度)。
6.29章,分治算法,虽然没有很明白算法,但是原理其实很简单:把复杂的东西拆分成若干小的部分,然后进行逐个解决或者说各个击破
7.30章,神经网络,其实没那么神秘,神经就好比一个网络(马尔科夫模型+贝叶斯网络)中的各个节点而已。
8.31章,大数据,这章是最推荐看的,而且没有很多专业的知识,一看就懂。不是什么都可以称之为大数据的,大数据需要满足几个条件:数据的代表性、数据的多维度、数据的完备性。现在有很多公司都自称自己有大数据,请不要侮辱大数据这个词。顺便说一下像百度这样的公司,近几年都在大数据上深耕,据我了解,比如医疗上面的项目,宁可免费做,只要求能够得到医疗方面的大数据,可见其对大数据的重视程度。
在网上看到有人推荐吴军博士的《数学之美》,尽管我从事社会科学研究,但对数学的推崇一直如此,所以买来一读,我的真切体验正如吴军博士在书的后记中所说,把自己“境界提升了一个层次”。
那么,对我而言,到底提升了什么境界呢?
首要的肯定是思想境界。在未读这本书之前,我知道对于这个世界的事件形成的信息集合,人类只有两种方式可以表达,一个是数字,一个是语言。整个实数的集合是无穷个,而且每个数字都是唯一的;整个世界中的事件也是无穷个的,而且每个事件也时独一无二的,这样数学中的数字集合与世界中的事件集合就构成一个一一对应的关系,所以研究数字之间的关系,实际上就是在研究世界中事件之间的关系。语言中的概念和世界中的事件之间也是可以构成一个对应关系的,但问题是,语言中概念的集合是有限的,所以它和数字集合的对应显然只能是部分对应。
计算机科学的发展,人类需要把语言处理成数字,因为计算机只能识别数字信号,所以“语言的数字化”成为计算机产生以来发展最快、而且最有创新性的领域,而许多华人科学家成为了这个领域的顶尖专家,如李开复,吴军博士是卓越的科学家之一。至此我才感到,在计算机主导的世界中,信息化就是数字化,而最难的数字化、也是最有成就的数字化,就是对人类自然语言的数字化,因为人类的信息几乎100%是用语言承载、传播的,计算机要与人对话,变成智能化的机器,首先要解决的就是语言的数字化问题。但我们在电脑上自如地输入文字时、或者拿着手机通话时,我们跟本没有意识到,那些卓越的语言科学家,早已经把我们的语言,转化成数字信号,通过输入、处理、解码的方式,让我们无障碍地联络、工作。
我似乎感到,语言与数字的关系,就是人与自然关系的接口。套用古希腊毕达哥拉斯学派的观点,加上我的理解,即是,数是万物的本原,语言是人的本原!
吴军博士似乎也在提升我对方法的认识境界。科学研究的思考方式,习惯遵循本质、规律、连续性思维,在语言学研究的早期,人类为了让计算机识别语言,采用建立语言规则和语言规则数据库的办法,但最终以失败告终(20世纪50-70年代),70年代后科学家采用了语言统计模型,研究取得了突飞猛进。语言统计模型的胜利,再一次证明了宇宙量子模型的信念,世界是不连续的随机性的粒子构成,人类数千年文明进化出来的语言系统,就是动态的随机概率事件。其二,物理思维再也难逃牛顿的经典本质思维方法,即找寻到百分之百确定性的规律,而信息论思维是研究如何把握不确定性现象,利用概率统计是不二法门。其三,语言本质上就是信息传播,只有从通信模型视角才能真正理解计算机的功能,对语言的编码、处理、传输、解码是计算机的强项,计算机是永远不可能理解语言的意思的。
在《数学之美》中,吴军博士对他的老师、师兄弟、同事的经历、掌故进行了叙述,让我们了解到这些世界一流的学科家、技术精英们的为人处世品质、鲜明个性、科学素养及其管理风格。例如贾里尼克对博士生的严酷淘汰,马库斯对学生的宽宏大度,但我感到他们有一样东西是共同的,就是对科学创造、顶尖人才的识别和器重,甚至是无条件的包容。如此为人的境界才是根本,因为伟大的科学创造毕竟是人做出来的,只有崇高的人文精神之下才能造就顶尖的人才、一流的科学和技术。
观国内的学说界,官风盛行、人情充斥,与这些一流学说群对科学创造的赏识、对个性人才的包容,对科学探索的热诚,可谓相去甚远。
看来,我们只能寄希望于年轻一代,但愿吴博士的《数学之美》,能让我们的学子们,初步体验到科学精英们卓越的才智与情怀。
本书介绍了Google产品中涉及的自然语言处理、统计语言模型、中文分词、信息度量、拼音输入法、搜索引擎、网页排名、密码学等内容背后的数学原理。让我们看到了布尔代数、离散数学、统计学、矩阵计算、马尔科夫链等似曾相识的内容在实际生活中的应用。相比于其他数学题材书籍,吴军老师把抽象、深奥的数学方法解释得通俗易懂,书中同时引用了诸多的历史典故和人物介绍,给人以很多启发,也让人由衷感叹数学的简洁和强大。
虽是数据专业毕业,但是才疏学浅,无力对数学的美进行阐述。仅就书中两个比较喜欢的地方发表一点不成熟的见解,与诸位共勉。
其一,在讲Google的搜素引擎反作弊时谈到做事情的两种境界“道”和“术”,术就是具体的做事方法,而道则是隐藏在问题背后的动机和本质。在术这个层面解决问题要付出更多的努力,有点类似于我们常说的“头疼医头,脚疼医脚”,暂时不疼了,过几天复发了,再去医治,如此往复,无法从根本上解决;而只有找到了致病原因,才能做到药到病除,根本治愈。本人之前参与过行内月终自动核对的研发,月终核对初期数据的不一致性只能靠数百业务人员人工核对数据差异,然后修改数据,每月1日都要加班加点,工作量很大,这是从术上解决问题。后来找到了产生差异的原因是会计核算时的利息调整造成的,把这些数据接过来进行相应冲减后差异就消失了,业务人员也不用来加班了,这才是从道上解决问题。
其二,是在做中文网页排名时提到的从业界成功的秘诀之一:“先帮助用户解决80%的问题,再慢慢解决剩下的20%的问题。许多时候做事失败,不是因为人不够优秀,而是做事的方法不对。一开始追求大而全的解决方案,之后长时间不能完成,最后不了了之”。我们在做项目时也是一样,业务有时要的功能非常急,可能有些功能也实现不了(比如系统响应时间长、查询明细不能支持省行等)。这时我们就要将焦点关注在那些可以实现的80%的功能上,哪怕刚刚上线的系统界面丑点,操作复杂点,反应速度慢点,但是至少业务有可用的系统,剩下时间再去优化那剩下的20%。这样可以帮助我行抢占先机,在与同行业的竞争中取得主动。如果等待我们把所有的细节都搞清楚再动手开发,力求完美,那么很可能系统能够上线的时候业务已经不需要了。
数学之美,也就是简单之美。希望大家能够喜欢数学,喜欢数学之美。
《数学之美》,一个从事多年工作的谷歌研究员眼中的数学。令我大饱眼福的是,大学里面的数学知识竟能如此广泛运用到了计算机行业中。
在语音识别、翻译,还有密码学领域,有着许多基于概率统计的模型和思想。当然,贝叶斯公式是基础,应用到隐含马尔科夫链模型,神经网络模型。
在搜索中,一些相关性的计算,无不用到了概率的知识。在新闻分类中,用到了一些有关矩阵特征值、相似对角化的知识。当然,在图像处理方面,矩阵变换可谓是无处不在。另外,在识别方面,有一些通信模型,涉及到了信道、误码率、信息熵。
最近刚开学也没什么事,所以就想随便找几本书看一下,但最好别是那种太艰深晦涩的书。8月份一直到现在,吴军写的这本12年5月出版的《数学之美》一直盘踞京东、亚马逊等各大网上商城科技类图书的榜首,当然,还有早些时候出版的《浪潮之巅》也排在很靠前的位置。心想市场的力量应该能帮我挑出好书吧,于是就从图书馆借了一本来,一直到今天晚上把它给看完了。
因此想写一点东西来总结、反思一下,反正刚开完班会也没什么事干。
写在前面的建议:如果你不讨厌数学的话,强烈推荐这本书,网上也可以下到电子版,不过阅读感觉上还是很不一样的。
废话就不多说了,《数学之美》其实是一本科普类的读物,所面向的是接受过普通高等教育的人,完全不需要在特定领域有很深的造诣就可以看懂,大概懂一点线性代数、概率统计、组合数学、信息论、计算机算法、模式识别最好(虽然列举了这么多,其实有些不懂也没关系……),所以尤其适合信科的人看。内容大部分是和人工智能、计算机相关的,这并非我所学的专业,但作者比较擅长将看似复杂的原理用简明的语言表达出来,所以可读性还是很好的。
吴军是清华大学毕业的,之前任职于Google,后来到了腾讯,这些文章都是发表在Google黑板报上的,后来经过了重写,所以网上下载的和书本内容有所差异。由于吴军本人是研究自然语言处理和语音识别的,所以统计语言模型的东西可能会多一点,不过我觉得这丝毫不妨碍全书数学之美的展现……感觉收获还是挺多的,知识上的有一些,但更多还是思维方式上的。作者举了很多例子试图让人明白很多看似复杂的高科技背后,基本原理其实是出乎意料简单的(当然,必须承认第一个想到这些方法的人还是非常了不起的……)。比如高准确率的机器翻译,看上去好像是计算机能够理解各国语言,隐藏在背后的却是很多具有大学理科学历的人都非常清楚的统计模型和概率模型;再比如拼音输入法的数学原理,早期的研究主要集中在缩短平均编码长度,比如曾经流行一时的五笔输入法,而现今真正实用的输入法却是有很多信息冗余、编码长度比较长的拼音输入法,作者从信息论和市场的角度做了简单的阐述;又比如新闻的自动分类,许多非IT领域的人可能会认为计算机可以读懂新闻并进行分类,而实际上只是特征向量的抽取、多维空间中向量夹角的计算,非常非常简单,但凡学过一点线性代数的人绝对是一看就懂的……当然,完美的实现还需要考虑很多细节和现实的情况,但这并不是这本书所关注的地方,数学之美在于其简洁而不是繁琐。
除了对于具体信息技术的剖析之外,作者还花了很大篇幅来讲一些杰出人士的成长过程,特别是把这些人的成长经历和中国学生的成长经历作对比。虽然作者并没有明说,但字里行间多少流露出对于中国高等教育以及很多中国企业的批评,一是教育的功利性,缺乏宽松的独立思考的环境,即使学了一堆理论也难有用武之地,自然也就缺乏创新性的成果;二是中国企业的短视,大部分都不舍得在新框架开发上投资,而是坐享学术界和国外企业的研究成果。
总结一下呢,《数学之美》事实上不能带给你编程能力的提升,也没法让人的数学水平有显着的提升,但它在很大程度上让你跳出教科书式的繁琐细节的束缚,能够从更宏观的角度来思考信息世界背后的数学引擎的运行原理,让人明白看似很高级、复杂的东西背后其实并不如我们所想象的那样复杂,而我们所学的“枯燥”的数学真的可以“四两拨千斤”,改变亿万人的生活。
这本书一共3章,主要介绍了这些数学方法:统计方法、统计语言模型、中文信息处理、隐含马尔科夫模型、布尔代数、图论、网页排名技术、信息论、动态规划、余弦定理、矩阵运算、信息指纹、密码学、搜索技术、数学模型、最大熵模型、拼音输入法、贝叶斯网络、句法分析、维特比算法、各个击破算法等。从第一章开始其明了幽默的语言就深深的吸引了我,让我觉得如果早一点看这本书,也许数学之于我就是另一番天地。
第一章里作者从原始人类的通信方式开始入手,人类最早利用声音进行的通信依赖于开篇给出的"编码-传输-解码"的基本原理,指出原始人的通信方式和今天的通信方式没什么不同,这世界上近现代最普遍的原理大部分都在人类发展的历史上被无意识的使用着。
第六章信息论给出了信息的度量,它是基于概率的,概率越小,其不确定性越大,信息量就越大。引入信息量就可以消除系统的不确定性,同理自然语言处理的大量问题就是找相关的信息。信息熵的物理含义是对一个信息系统不确定性的度量,这一点与热力学中的熵概念相同,看似不同的学科之间也会有着很强的相似性。事务之间是存在联系的,要学会借鉴其他知识。
这本书里也能找到不少在学的课程知识,如大学专业课里,数电总是要比模电简单不少,而自然界里大部分的信号都属于模拟信号。所谓模拟信号,是指从时间和数值两种维度上看来都是连续变化的信号。在实际电路中,模数转换是一个很重要的过程,将预处理的模拟信号经过模数变换为数字信号,然后进行数字信号处理。而数字化处理有很多优点,比如功能强大、抗干扰能力强、易于传输等。
简而言之,如果没有数学,就没有数字信号处理和传输的概念,而数字信号传输在当下大规模的集成电路里是必不可少的,这是通信成功的基本要求。
作者把生活中遇到的复杂的问题,以简单清晰,直观的模型或者公式展现出来。我们可能过于注意生活中的种种奇妙现象,往往忽略了追求其理论逻辑的演绎,而这,也是大部分问题的主要根源。
罗素曾经说过:"数学,如果正确地看,不但拥有真理,而且也具有至高的美";爱因斯坦也曾说过:"纯数学使我们能够发现概念和联系这些概念的规律,这些概念和规律给了我们理解自然现象的钥匙。"数学在所有科学领域起着基础和根本的作用。"哪里有数,哪里就有美".在这里,我也想把《数学之美》真诚推荐给每一位对自然、科学、生活有兴趣有热情的朋友,不管你是从事职业,读一读它,会让你受益良多。
吴军老师在《数学之美》中提到:"这本书的目的是讲道而不是讲术。很多具体的搜索技术很快会从独门绝技到普及,再到落伍,追求术的人一辈子工作很辛苦。只有掌握了搜索的本质和精髓才能永远游刃有余".回到我们日常的生活中,需要学习的东西、技术太多太多,如果一味地只为去追技术的脚步,那么我们也会很累很累。然而基本的原理却是没有怎么变化的。只见森林,不见树木,难免迷失;站在高处向下看,也许我们一直看不到底,但是站在底处却是可以看见底的。
我是在读了吴军博士的《浪潮之巅》之后,发现推荐了《数学之美》这本书。我到豆瓣读书上看了看评价,就果断在当当上下单买了一本研读。本来我以为这是一本充满各种数学专业术语的书,读后让我非常震撼的是吴军博士居然能用非常通俗的语言将自然语言处理等高深理论解释的相当简单。在李开复博士之后,吴军博士又成为了目前备受瞩目的'具有深厚技术背景的作家。对于我来说,读这本书有扫盲的功效,让我知道了很多以前不知道的东西。我的想法是在研究生阶段,不只局限于导师的研究方向,通过更加广泛的涉猎知识,去寻找一个自己喜欢的研究领域。如果找到了这样一个领域,那么我就读博士。如果没有的话,那么我想还是工作算了。
1、学科之间的联系是如此的重要
全书主要是围绕着吴军博士所研究的自然语言处理方向来讲述一些应用在这个研究领域的数学知识,用了很大篇幅讲解了将通信的原理应用到自然语言处理上所取得的巨大成功。以前学习计算机网络的时候,学过一个香农定理。对香农的认识就从香农定理开始,因为考研会考相关的计算题。看了这本书才知道,香农的《信息论》对今天的影响真的是不可估量。通过这样一个过程,我也对以前的本科学校的学科建设产生了一些忧虑。对于培养计算机人才来说,无论是培养应用型人才,还是培养研究型人才,都应该与电子、通信有一定的交叉,这样对学生思考问题的启发与视野的开阔有着重要的作用。计算机本身就是从电子、通信、数学等学科中抽出来的新兴的学科,在发展了多年之后,我们发现它仍然需要继承一些传统。回想自己的本科四年,上的更多的课时
语言类、技术类的课程,这些课程的确对提升学生的就业有很大帮助。但是我想说的是,一个忽视数学基础、学科交叉的学校,他无法成为一所国内的一流大学。作为一个母校培养的学生,我深知改革的阻力与困难,但是我希望母校的计算机学院能越办越好。我们现在已经培养出很多高薪优秀的技术人才,我希望将来也能培养出更多的研究型人才。
2、看起来很牛的东西却用着难以置信的简单数学原理
在整本书中让我最为印象深刻的是解释Google搜索的原理,居然就是简单的布尔代数运算。这个的确让我大跌眼镜,我一直认为搜索时一个非常复杂而庞大的问题,其数学原理也是相当高深的,但是吴军博士的解释让我大开眼界。与此同时也知道了Google为什么牛,牛在哪了。搜索的原理虽然非常简单,但是搜索是一个需要对海量数据进行操作的工作。Google在海量数据的处理方面的确是相当先进的,MapReduce、BigTable等等一些技术的发明与应用使得Google在搜索上无出其右。目前分布式存储、分布式计算、数据仓库与存储等研究领域近些年来的大热也说明Google在引领研究方向上的超凡本领。
3、感谢概率老师的教诲
在大二的时候,有一个在我们学生中声望很高的概率老师,他在课程即将结束的时候跟我们说我们将的是前几章,这些事概率论与数理统计的基础。对于你们计算机的学生来时,后面的章节才是最有用的,以后一定要好好的研究,弄上一两个在你的毕业设计上就会让你毕业设计提升一个档次,有可能验收你毕业设计的老师也不懂。我当时对他的话没有特别在意,我只关心期末考试要考哪些题目,因为我那个学期的概率课基本上都在睡觉,只有他讲笑话的时候不睡。我看《数学之美》后发现马尔科夫链、贝叶斯网络之后,对以前的概率老师充满无限的敬意。我发现我们再本科阶段学习的《高等数学》、《线性代数》、《概率论与数理统计》在计算机学科应用较多的要数概率论与数理统计,还有一门我学的不好的《离散数学》在计算机中也是有着举足轻重的地位。我在看米歇尔的《机器学习》时也发现很多熟悉的概率论与数理统计的知识,这让我不得不开始考虑重新弥补自己的数学短板。我的想法是在研一这一年把概率论与数理统计、线性代数、离散数学尽我最大的努力补一补,希望他们对我今后的学习有所帮助。
4、说说作者吴军博士
吴军博士写的书对于学习计算机的学生来说,读起来有种说不出的亲切感。可能这跟他是技术出身的原因有关,流畅的文笔、质朴的文风也让人读起来很舒服。看高晓松在优酷上的《晓说》就知道,在硅谷有着众多的华裔工程师,他们很多都来自清华、北大等国内的名牌大学,这些人在美国实现着自己的梦想。吴军博士也曾是这其中的一员,我非常希望那些像吴军博士一样的牛人们能够写书或者来国内的大学做一些演讲、论坛等等,开阔一下我们的视野,传授一下做学问的经验。与此同时,我也在想为什么我们国家那么多优秀的IT人才都去了美国。这个问题在我去苹果公司在东软信息学院组织的培训过程中得到了答案,那个南京邮电的老师讲了讲中国为什么不像美国那么有创造力。我们中国人并不缺乏创造力,很多时候是我们所处的外部环境恰恰阻碍了创新。我想那么多优秀的清华北大学子纷纷到大洋彼岸的美国,正是被美国开放的学术环境、创新氛围所吸引,每个人都有自己的梦想,他们去美国也是为了能实现自己的梦想。以前都觉得他们是不爱国,现在长大了,对于这个问题看得更清楚了一点。我想说我们的祖国在经历了改革开放30多年的飞速发展之后,目前正处于一个关键和脆弱的时期。我们靠着人口红利取得了巨大的成就,我们能不能凭借人才红利取得更大的成就还是未知。希望有更多的人才能像李开复博士、吴军博士那样,为我们这个民族青年的成长和国家发展做出贡献。
上个月去北京开会,顺道拜访了人民邮电出版社,合作多年的编辑陈冀康赠我一本《数学之美》,说一定是我喜欢看的类型。以前也在网上零散看过Google黑板报上吴军先生的文章,对他的前一本书《浪潮之颠》也有耳闻,但没有读过。这次有机会集中阅读他的文章,确实是一段美妙的体验。
读完这本书有一点强烈的感受:工具一定要先进。数学是强大的工具,计算机也是。这两种工具结合在一起,造就了强大的google、百度、亚马逊、阿里、京东、腾迅等公司。他们不是百年老店,但他们掌握了先进的工具。
掌握了先进的工具,必将获得竞争优势。如果你知道哪里有一群软件工程师,维护着更大的一群计算机,那么不要犹豫,想办法使用他们提供的服务,因为这会给你带来优势。所以我们使用Google的搜索和邮件,在亚马逊、京东和淘宝上购物,用QQ和微博联系朋友,使用银行卡和网上银行,利用交易终端在全球市场上进行各种交易……
人类历史就是一部工具的进化史。石器、青铜、铁器、火药、蒸汽机、内燃机、电报、电话、电视、计算机、卫星、互联网,工具的进步引领着文明的进步。新的工具不断淘汰老的工具,就像互联网视频点播正在淘汰电视、微博正在淘汰报纸、电子书正在淘汰纸质书那样。
但有一些古老的工具,今天仍有人在学习和使用,甚至在上面花费许多时间。毛笔就是这样一个例子。今天学习掌握毛笔这种“落后的”工具,还有什么意义?其实我们在使用一些“落后的”工具时,主要是在学习工具背后的思想。书法和绘画中蕴含的艺术审美的一般原则,经得起具体工具变迁的考验。甲骨文、金文、石鼓文所包含的对空间构图的理解,仍然值得现代人学习。思想工具是比实物工具更强大的工具。
工具组合使用,形成更强大的新工具。《数学之美》中提到的马尔可夫链虽然是很强大的工具,但我在数学课上没有听老师提到过。这本书中给我印象最深的例子是余弦定理和新闻分类。余弦定理是中学数学,再加上一些不算很难的多维向量的知识,竟然解决了计算机新闻分类这样的难题!
每一种工具的背后,是人们对世界的一种理解。蒸汽机和内燃机背后,是力学的世界。电报、电话、电视、计算机和互联网背后,是信息的世界。数学是抽象的工具,是其他工具背后的工具。每一门学科要成为科学,都少不了数学。也许有一天人们会习惯,用数学工具来分析艺术。数学是一种语言,它源于具体的世界,又高于具体的世界。如果说语言是对世界的认识和描述,如果说数学是一种语言,那么它一定是最接近神的语言。看似毫不相关,却又能描述万事万物。
学习数学有什么用?物理学家费曼当年在大一时提出这个问题,他的师兄建议他转到物理系。今天,这个问题已不成为问题。具有扎实数学功底的人才正进入各行各业,例如金融业。我认识一个出版社的老总,他招应届毕业生有一个条件:数学要好。
工具虽好,关键还要会用。最终要回到掌握先进工具的人。软件算法工程师加上计算机集群,这是目前一流企业必需的装备。正如马克.安德森所说的,各行各业的一流公司,都是软件公司。优秀的软件算法工程师,是人才争夺的焦点。这样,我们就容易理解Google招工程师的要求。
对信息加工处理和传递的能力不断增强,是知识经济的特点。《数学之美》展示了Google如何运用数学和计算机网络,带领我们进入云计算和大数据时代。
知识经济时代的工作,就是在各自的领域中进行科学研究。科学研究要大胆假设,小心求证。科学研究要量化。科学研究要有对比实验。科学研究要有数学模型。科学研究要有田野调查。科学研究要有文献查证。科学研究要有同行评议。《数学之美》向我们介绍了自然语言分析领域的科研方法和过程。
任何一个领域,深入进去都有无数的细节。有兴趣的人不但没被这些细节吓倒,反而会兴致勃勃地研究,从而达到令人仰慕的高度。吴军先生向我们展示了数学和算法中的这些细节,也展示了他所达到的高度。值得我学习。
感谢吴军先生分享他的知识和深刻见解,也感谢人民邮电出版社出了这样一本好书。
广东高考排名242300左右排位历史可以上哪些大学,具体能上什么大学
湖北高考排名104130左右排位历史可以上哪些大学,具体能上什么大学
贵州建设职业技术学院的给排水工程技术专业排名怎么样 附历年录戎数线
河北高考排名28460左右排位物理可以上哪些大学,具体能上什么大学
内蒙古高考排名67180左右排位理科可以上哪些大学,具体能上什么大学
新疆师范大学的小学教育专业排名怎么样 附历年录戎数线
水浒传读后感范文600字(精选五篇)
有关学生感恩的演讲稿题材10篇
三分钟学生演讲稿 十五篇)
与匹诺曹共成长读后感
水浒传读后感范文600字(精选五篇)
与匹诺曹共成长读后感
最新绿野仙踪读后感400字(通用10篇)
世界是平的读后感(精选六篇)
我想去看海读后感550字
小王子读后感8篇
华南农业大学在天津高考历年录戎数线(2024届参考)
江苏高考排名16600左右排位历史可以上哪些大学,具体能上什么大学
烟台科技学院和上海电机学院哪个好 附对比和区别排名
河南高考排名318030左右排位理科可以上哪些大学,具体能上什么大学
福建高考排名133810左右排位物理可以上哪些大学,具体能上什么大学
苏州高博软件技术职业学院和云南理工职业学院哪个好 附对比和区别排名
贵州高考排名32850左右排位文科可以上哪些大学,具体能上什么大学
江西高考排名116110左右排位文科可以上哪些大学,具体能上什么大学
无锡科技职业学院和海南经贸职业技术学院哪个好 附对比和区别排名
广东东软学院和浙江工商大学杭州商学院哪个好 附对比和区别排名
黑龙江高考排名10690左右排位文科可以上哪些大学,具体能上什么大学
云南高考排名60240左右排位理科可以上哪些大学,具体能上什么大学
豫章师范学院和盐城工学院哪个好 附对比和区别排名
考四川建筑职业技术学院要多少分浙江考生 附2024录取名次和最低分
河北高考排名175850左右排位历史可以上哪些大学,具体能上什么大学
广东高考排名67160左右排位历史可以上哪些大学,具体能上什么大学
枣庄学院和浙江农林大学哪个好 附对比和区别排名
广西高考排名33140左右排位理科可以上哪些大学,具体能上什么大学
湖南高考排名84000左右排位物理可以上哪些大学,具体能上什么大学
武汉生物工程学院在河北高考招生计划人数专业代码(2024参考)
开学第一天读后感50字
我来自孤独星球读后感八篇
心灵谜码读后感
遇见未知的自己读后感800字
关于伪君子的读后感
学会宽容——窗边的泄豆读后感
致青春读后感
态度读后感范文(通用六篇)
课文地震中的父与子读后感400字
窗边的泄豆小学读后感
关于人间有晴天读后感(精选六篇)
鲁滨逊漂流记读后感-读后感500字
李小小列传读后感
向着光亮那方精蚜后感
猎人日记读后感