《这才是好读的数学史》优秀读后感(精选10篇)

张东东老师

  《这才是好读的数学史》读后感1

  数学是神秘的,古老而明亮,在人类历史长河中,闪闪发光,我读了数学史后,知道了数学的起源,发展与未来的走向,其中,《微积分与应用数学》给我留下深刻印象

  16世纪到17世纪,可以说是一个数学史路上一个里程碑,在16世纪早期,学者们创造了代数,他们被称为“未知数计算家”,在那个时期,代数占据了数学史的中心位置,而到了16世纪末17世纪初,人类开始了新的探索,代数与几何共存,以此来研究天文,工程,航海,甚至是政治上的一些问题:开勒普用希腊圆锥描述太阳系,托马斯·哈里奥特则发展代数,笛卡尔把代数和几何结合,从而开始理解彗星,光等现象,这一时期,可以说是各种数学成就在此出生,但最出名的,还是微积分,当时人们无法用数字表现出天体的运动,无法表现一些抽象的物体,于是牛顿与莱布尼茨发明了微积分,但微积分始终还是较为抽象,不就后,当时最著名的数学家——欧拉也做出了一系列成就:三角形中的几何学,多面体的基本定理,有趣的是,欧拉甚至将数应用于船舶,中彩票或是过桥,欧拉将自己生活的方方面面都往数学上想,在他的世界中,数学无处不在。

  我们不难看出这些数学家的发明的确大大改变了人们的生活,他们掌握了探索世界的钥匙——数学,将数学应用到方方面面,我们现代生活不也是如此,处处是数学,但最重要的是,我们热爱数学。

  《这才是好读的数学史》读后感2

  从小到大,在学习数学的过程中,我们接触大量的数学题,但却对数学的历史很少提及。《数学史》,是一本专门研究数学的历史,娓娓道来数学从古代到先代的发展史,满足了我的好奇,把数学的发展过程展示出来。

  本书于19/58年出版,作者是J.F.斯科特。书中主要阐述西方数学的发展历史,但也专门用-章讲述印度和中国的数学发展。沿着时间轴,数学的发展经历了从初等到高等的过程。

  数学对于我来说是一个奇妙的科目,它不仅仅是一堆数字和符号连接在一起的公式,更是时代和科技的发展与进步。这本书让我明白数学的起源与发展,随着历史的长河不断向过往延伸,我热爱数学,并不是因为它带给我较高的成绩,而是我本身在解出一道难题时的自豪与它带给我的成就感,我享受解题的过程,随着时间的流逝心却在题海中慢慢放松,变得平静。而在对数学史了解之后,你就像身在一张地图,但你却清楚的知道自己的位置,寻找方向就愈加容易。

  这本书很好的帮我更上一层楼,让我怀着对数学的热爱不断探索,即便自己只不过是浩瀚星河中一粒尘埃,却不显得十足渺小。

  学习数学,最好能够先了解它的历史与背景,这样才能明白自己在学着什么,对它产生兴趣而不是当成必须完成的任务,所以我也极力推荐大家看这本书。

  《这才是好读的数学史》读后感3

  首先,看到这本书后,第一个感觉是这本书太厚了,肯定无聊。而第二个印象是在每一个概念后的“见数学概念小史某某页”,然后这最重要的事是这书讲了这我不曾了解的事。

  从过去到现在,先是古埃及人,他们的方法对于现代太不实用了,但是他们还是聪明,知道用符号,用两个符号来表示1()和10(),这东西就是幂,在生活中肯定很少用,而且我还发现这数学呢我一直认为是想从简单到复杂,但是并不是如此,可以说是相反的。

  比巴伦的数学家们特别有趣,造的题目也有趣,不实用,但是很好玩,在本书的15页,有这原题,这大概就是用一根芦苇去测量田有多大,其实就是二元一次方程,但是看完头都大了,不知到底在讲什么。

  继续读着,诶!看见了老熟人——欧几里得,从小学周围的人都在谈论着他,给我讲他的旷世巨作《几何原本》,过去经常说“好,好,好,《几何原本》好。”但是我并不知道这书居然是公元前三千多年左右写的,我一直认为他是希腊人,但是他居然是埃及人,这好奇怪,据书中说有很多的希腊数学家都不是希腊人。

  继续读,数学也和天文学有关,从天文学中又出现了三角学,原来三角学是从天文学出来的,在读阿拉伯数学时,看见了“杨辉”三角形,但是这书中的是“帕斯卡三角形”,其实也是“杨辉”三角形,所以后者好记些。

  微积分里面看见了伽利略,但是似乎不是他的主场,所以不管他,微积分这里知道了流数和微分基本上都是我们现在所称的导数。他们的发明者分别是牛顿和莱布尼茨。牛顿这特别熟悉了,这莱布尼茨是个律师和数学家,他最可以的是他的公式几乎都是在颠簸的马车上写下。在各个学科每每留下了著作。

  还有一个人让我记住了,叫做欧拉,不光名字好记,他自己也是一个喜欢记的人,据书上所说,他可以说是一个论文天才也是数学天才,因为只要他有一个好的方法,自己马上就写一篇论文,来记下自己的观念。

  这便是这《这才是好读的数学史》上篇的读后感,不是特别无聊,反而还有一些有趣,整体的布局也不错,让读者一步步深入,有特别强的吸引力,可能因人而异吧,下篇就是纯数学了,所以这便是我的读后感了。

  《这才是好读的数学史》读后感4

  在这个寒假,我阅读了一本名叫《这才是好读的数学史》这本书叫这个名字确实是名副其实,他为人们介绍了最全面的数学史,以及名人与数学之前的故事,还有各国数学的起源到发展。

  数学的形状和名称以及关于计数和算数运算的基本概念似乎是人类的遗产。早在公元前500年,数学就出现了,随着社会的不断发展,就需要一些方法来统计拖款欠税的数额等等,这时候数学就开始出现了。那时候的古埃及人用墨水在纸草上书写这种,这种材料是不易保存数千年的。大多数埃考古家挖掘的石头都是在神庙和陵墓附近,而不是在古城遗址。因此我们只能通过少量的资料来考察古埃及的数学发展史。

  许多古代文化发展了各式各样的数学,但是希腊数学家们是独一无二的,他们将逻辑推理和证明摆在数学的中心位置。希腊数学传统的保持和发展一直延续到公元400年。我们了解的希腊数学最早是欧几里得的《几何原本》,可我们也只了解这一本著名的书。希腊数学的优势便是几何,尽管希腊人也研究了整数,天文学,力学。但是根据古希腊几何学史学家的说法,最早的希腊数学家是600年前的泰勒斯,毕达哥拉斯都要比他晚一个世纪,当记录历史时,泰勒斯和毕达哥拉斯都成为了远古时期的神话级人物。

  又在20世纪初,希伯尔特提出了一系列重要问题,又在21世纪开始在克莱数学学院的带领下,选择7个数学课题,并且提供的100万美金来解决每一个问题数论则是另一个发展方向。正如我们的数学概念小史中解释的,费马的最后定理在19/94年得到了证明。

  在今天的数学中涉及了许多不同的领域,所以我们要好好学习数学,并且多看有关数学的书,才能使我们的数学成绩突飞猛进。

  《这才是好读的数学史》读后感5

  在任何起点上要想学好数学,我们需要先理解相关问题,然后才能赋予答案的意义 ——引言

  数学, 似乎是一个枯燥的学科,但却是我们生活里最为有用的工具之一,它是物理化学生物的摇篮,是政治经济学的基础,是市场里的公平称,是我们量化自己的必要工具...是的,数学是一个“工具箱”!那么,前人是怎么样把这个工具弄得更为人性化,更能让我们好好地使用呢?看完《这才是好读的数学史》后,我知道了许多。

  《这才是好读的数学史》介绍了数学从有记载的源头,到最初的算数,再到代数、几何等领域不断地深入化发展的历史过程。本书按照历史发展顺序,先后介绍了数学的开端,古希腊的数学,古印度的数学,古阿拉伯的数学,中世纪欧洲的数学,十五和十六世纪的代数学。

  在人类对于数学漫漫求索之路上,诞生了许多古代文化,而这些古代文化发展了各种各样的数学 。其中,古代伊拉克的历史跨越了数千年,它包括了许多文明,如苏美尔,巴比伦,亚述,波斯和希腊文明。所偶有这些文明都了解并使用数学,但有很多变化。在这儿不得不提到的是古希腊数学。在此之前,各个文明运用数学仅仅是用来协助、解决一些简单的生活问题,有时不就此满足的人们也会有简单的探索,但希腊的数学家们是独一无二的,他们将逻辑推理和证明作为数学中心,也是正因如此,他们永远改变了运用数学的意义。

  数学源于生活却高于生活。如今的数学在生活中被广泛的运用,一起热爱数学吧!向为数学做出巨大奉献的前人们致敬!

  《这才是好读的数学史》读后感6

  本书上篇 数学简史共12章节,以时间顺序讲述。从3.7万年到如今,人类在不断进步,而数学也随着人类的进步而进步。在这本书中,强调了数学的抽象性与神秘性。

  我们现在学习的知识都是先辈们经过漫长探索、研究、讨论总结出的。书中出现的故事和公式使人眼前一新。比如古埃及人求圆的面积时,实际上是求圆的近似值。如今大家都知道π·r,古埃及人却是用(8/9·d)求S圆的近似值。可以发现古埃及人在这个公式里并没有使用到“π”,这样反而要方便些。

  我注意到的一个故事是:21世纪开始,克莱学院决定在克莱的领导下,选择7个数学课题,并予每个课题100万美金的奖金,而那7个数学课题是关于“千禧年问题”书中并没有提到7个问题分别是什么,于是便上网查了查。分别是:戴雅猜想、霍奇猜想、纳维尔-斯托克斯方程、P与NP问题、庞家莱猜想、黎曼假设、杨-米尔斯理论。这7个问题是真的难,连题目都看不懂的那种难.

  有一个问题与开普勒猜想有关:如何将最大数量的球体放置在最小的空间中,我认为这和奇点有些相似,但看起来不成立的样子。但在那些数学家的眼里,这仿佛是一个十分有趣,又值得思考的问题。托马斯·黑尔斯最终证明了它。

  数学是抽象的,也是无限的,他们的出现大概是我们的祖先为了方便生活而发明出来的。到如今,数学在不断的进步,但还是有许多十分困难的问题在等着我们去解答。数学不仅在生活中扮演着重要的角色,还是世界通用的语言。

  《这才是好读的数学史》读后感7

  有关数学的故事跨越了几千年。本书分为数学简史和数学概念小史两部分,在介绍数学的知识的`同时又讲述了各个时期,各个地区的数学历史与发展,并且解决了很多的数学题目。

  数学简史这部分介绍了许多地区的数学历史与发展。数学的开端、希腊数学、印度数学、阿拉伯数学等等。数学概念小史这部分则通过事例,介绍了数学界许多重要人物的成果和相关题目。数字“0”的故事就很有趣。四世纪的时候,巴比伦人用一个小点来避免楔形文字记数混淆,“0”作为占位开始了它的生命。但这时候,它还只是一个跳过某些东西的符号。公元九世纪的印度开始把0作为一个数字来对待。当时在东方国家数学是以运算为主,而西方是以几何为主,所以当阿拉伯数学家阿尔.花剌子模初引入0这个符号和概念到西方时,曾经引起西方人的困惑,把0本身作为一个数字看待的想法花了很长时间才确立。

  读完这本书,我对古人先辈的智慧感到敬佩,对数学历史的源远流长感到惊叹,更对数学知识有了更深的理解。数学源于生活却高于生活。如今,数学在生活中被广泛的运用,很多事情都离不开数学。所以,我们不说对数学进行什么更深层次的研究,而是应该更加热爱它。并且我们要学习前人那种对未知事物的坚定、执着的探索精神,对当下学习的数学知识学懂、吃透。我认为,这是很重要的。

  《这才是好读的数学史》读后感8

  数学是一门枯燥的学科,我从小就这样认为。但是通过这个寒假,这本《这才是好读的数学史》,打开了知识文化的一扇大门,让我对数学有了更深入的了解与思考,并且领悟到了其中的魅力。

  数学的历史非常悠久,从很久很久以前就已经有了数学。那时候的人们刚刚接触到了它,而随着时代的变迁,数学的文化越来越博大精深。正是因为那些伟大的数学家们所做出的巨大贡献,才让后代的人类将数学发展得越来越好。例如一位亚历山大的希腊数学家欧几里得,他从一小部分公理中总结了欧几里德几何的原理,还写了另外五部关于球面几何、透视、数论、圆锥截面和严谨性的作品。欧几里得因此被人们称为“几何学之父”。

  数学文化奇幻无穷。最让我印象深刻的便是阿拉伯数学文化。阿拉伯数学家不仅让代数成为数学的重要组成部分,而且还在几何学和三角学方面做出了重要的贡献。同时,“帕斯卡三角形”也就是“杨辉”三角也被他们所了解。阿拉伯数学文化的特点则是能够从其他数学的知识中汲取到最有用的精华,并且发展它。

  数学中有很多被数学家们所发现和证明的公式、定义,我们都认为那是枯燥的、繁琐的。但是数学有自己的灵魂与存在的意义,普罗鲁克斯曾说过“数学赋予它所发现的真理以生命;它唤起心神,澄清智慧;它给我们的内心思想增添光辉;它涤尽我们有生以来的蒙昧与无知。”因为有了数学,人类的民族发展得越来越顺利;因为有了数学,人类的生活变化得多姿多彩……

  数学的发展并不是我们想象中的那么顺利,而是经历了无数的困难和挫折,才成为了我们现代的数学。它的成就则是数学家们日日夜夜的研究与思考所造就的,让数学真正地显露出了它的价值。中国的数学源远流长,拥有着它自己的特色与意义。重大的数学定义、理论总是在继承与发展原有的理论的基础所建立起来的,它们不但不会改变原本的理论,而且经常将最初的理论思想包含进去。正是因为我们不断地为它注入灵魂力量,它才能越来越强大,越来越辉煌!

  数学史的学习让我们更加理解数学的意义,从而在知识的海洋中不断发现、不断进取、不断研究,逐渐形成对数学的热爱!

  《这才是好读的数学史》读后感9

  在这个寒假里,我接触到了《数学史》这本书。这本书介绍了数学从有记载的源头向最初的算术、几何、统计学、运筹学等领域不断深化发展的历史进程,以及如今数学的发展。

  这本书分为两篇,上篇是数学简史,下篇是数学概念小史。这本书中令我印象最深的数学家就是费马。皮埃尔·德·费马是属于文艺复兴时期传统的人,他处于重新发掘古希腊知识的中心,但是他却问了一个希腊人没有想到过要问的问题—费马大定理。这个问题困惑了世人358年,直到19/94年的9月19日安德鲁·怀尔斯才宣布解开这个问题。这个问题起源于古希腊时代,它联系着毕达哥拉斯所建立的数学的基础和现代数学中各种最复杂的思想。费马大定理的故事和数学的历史有着密不可分的联系,它对于“是什么推动着数学发展”,或者是“是什么激励着数学家们”提供了一个独特的见解。费马大定理是一个充满勇气、欺诈、狡猾和悲惨的英雄传奇的核心,牵涉到数学王国中所有最伟大的英雄。巴里·梅休尔评论说,在某种意义上每个人都在研究费马问题,但只是零星地而没有把它作为目标,因为这个证明需要把现代数学的整个力量聚集起来才能完全解答。安德鲁所做的就是再一次把似乎是相隔很远的一些数学领域结合在一起。因而,他的工作似乎证明了自费马问题提出以来数学所经历的多元化过程是合理的。

  读了数学史后,我认为数学在我们的生活中扮演着不可或缺的角色,只有学好数学,学会应用数学,我们才能在这个正在向数字化发展的社会稳稳地站住脚跟。

  《这才是好读的数学史》读后感10

  读完《这才是好读的数学史》之后,我最想表达的就是对数学悠长的历史的感叹,这本书让我了解到从3.7万年前到现在21世纪的数学的发展与进步,也明白了数学在生活中的重要性。

  下面我将介绍几点我印象最深刻的内容:

  在书中第一章:开端中介绍了四大文明古国的数学文化,包括当时的人们用什么材质的东西来记录数学,用数学干什么以及保存情况如何。在这一章讲述古巴比伦的数学是写了他们数学中几个特征,包括以60的幂表示数字,所以接近4000年后的今天为什么仍然把一小时分成60分,把一分钟分成60秒。在这一章中也讲了我国古代的数学文化,在书中介绍了《算经十书》《九章算术》等中国古代的数学经典,由于种种原因导致当时的数学文化的损失,但作者实事求是,没有写一些没有历史根据的东西,再一次让我感受到这本书的严谨。

  书中是按国家的顺序进行安排的,因为如果按时间顺序安排的话,很容易弄混淆,作者按照时间线上在某个时间点上最重要的事情的国家来安排,体现了本书“好读”的特点。

  在书中有一个细节让我注意,每一章最后都会有一段来推荐一些关于本章内容更详细的讲解的书目,甚至详细到了具体在哪一章,在书的最后把对应的书名写了出来(虽然是英语的,我看不懂)从中可以看到作者对待数学的严谨和细致。

  我非常喜欢在书中的一句话“学习数学就像认识一个人一样,你对他(她)的过去了解的越多,你现在和将来就能越理解他(她),并与其互动。”这句话感觉就像说中了我的感受,我认为阅读完之后,自己不仅会对数学更有兴趣,而且在以后学习数学的时候更加认真对待。