“等差数列”一课的

孙小飞老师

“等差数列”一课的

  教学目标:

  (1)理解等差数列的概念,掌握等差数列的通项公式;

  (2)利用等差数列的通项公式能由a1,d,n,an“知三求一”,了解等差数列的通项公式的推导过程及思想;

  (3)通过作等差数列的图像,进一步渗透数形结合思想、函数思想;通过等差数列的通项公式应用,渗透方程思想。

  教学重、难点:等差数列的定义及等差数列的通项公式。

  知识结构:一般数列定义通项公式法

  递推公式法

  等差数列表示法应用

  图示法

  性质列举法

  教学过程:

  (一)创设情境:

  1.观察下列数列:

  1,2,3,4,……;(军训时某排同学报数)①

  10000,9000,8000,7000,……;(温州市房价平均每月每平方下跌的价位)②

  2,2,2,2,……;(坐38路公交车的车费)③

  问题:上述三个数列有什么共同特点?(学生会发现很多规律,如都是整数,再举几个非整数等差数列例子让学生观察)

  规律:从第2项起,每一项与前一项的差都等于同一常数。

  引出等差数列。

  (二)新课讲解:

  1.等差数列定义:

  一般地,如果一个数列从第项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母表示。

  问题:(a)能否用数学符号语言描述等差数列的定义?

  用递推公式表示为或.

  (b)例1:观察下列数列是否是等差数列:

  (1)1,-1,1,-1,…

  (2)1,2,4,6,8,10,…

  意在强调定义中“同一个常数”

  (c)例2:求上述三个数列的公差;公差d可取哪些值?d>0,d=0,d<0时,数列有什么特点

  (d有不同的分类,如按整数分数分类,再举几个等差数列的例子观察d的分类对数列的影

  响)

  说明:等差数列(通常可称为数列)的单调性:为递增数列,为常数列,为递减数列。

  例3:求等差数列13,8,3,-2,…的第5项。第89项呢?

  放手让学生利用各种方法求a89,从中找出合适的方法,如利用不完全归纳法或累加法,然

  后引出求一般等差数列的通项公式。

  2.等差数列的通项公式:已知等差数列的首项是,公差是,求.

  (1)由递推公式利用用不完全归纳法得出

  由等差数列的定义:,,,……

  ∴,,,……

  所以,该等差数列的通项公式:.

  (验证n=1时成立)。

  这种由特殊到一般的`推导方法,不能代替严格证明。要用数学归纳法证明的。

  (2)累加法求等差数列的通项公式

  让学生体验推导过程。(验证n=1时成立)

  3.例题及练习:

  应用等差数列的通项公式

  追问:(1)-232是否为例3等差数列中的项?若是,是第几项?

  (2)此数列中有多少项属于区间[-100,0]?

  法一:求出a1,d,借助等差数列的通项公式求a20。

  法二:求出d,a20=a5+15d=a12+8d

  在例4基础上,启发学生猜想证明

  练习:

  梯子的最高一级宽31cm,最低一级宽119cm,中间还有3级,各级的宽度成等差数列,请计算中间各级的宽度。

  观察图像特征。

  思考:an是关于n的一次式,是数列{an}为等差数列的什么条件?

  课后反思:这节课的重点是等差数列定义和通项公式概念的理解,而不是公式的应用,有些应试教育的味道。有时抢学生的回答,没有真正放手让学生的思维发展,学生活动太少,课堂氛围不好。学生对问题的反应出乎设计的意料时,应该顺着学生的思维发展。