集合的教案反思范文(精选三篇)

孙小飞老师

  集合的教案反思1

  集合间的基本关系是在前面学习了集合的概念、表示方法及集合与元素的关系后来研究集合之间的一种关系,它为后面学好集合的运算起着非常重要的作用。

  从事这一节教学时,我首先根据思考利用类比的思想引入集合之间有何关系,通过例子说明集合有包含相等等关系,引入本节课的内容。

  讲解子集、相等、真子集、空集概念时,让学生认真读概念,理解概念中的关键字。通过反例深刻理解概念中关键字并记住。同时,对概念的三种语言进行点明,概念用文字语言,符号语言及图形语言有机结合,逐步使学生由文字语言向符号语言、图形语言过渡。

  上课时我还注意将抽象概念与实例相结合,鼓励同学们积极发言,举例子来理解概念,尤其是空集的例子。学生大多举的是方程无解的例子。有的认为{0}是空集,组织学生讨论,让学生自己辩论后认为它不是空集,加深学生的理解。

  最后,我与学生共同将子集、相等、真子集等的性质进行了总结,还通过一一列举得出例子的推广,n个元素组成的集合有 个子集, 个真子集, 个非空子集等。

  通过本节课教学,有以下想法:如果让我重上这节课,我是否可以写出本节课三大知识点?子集,相等,真子集让学生自学,通过例子、各小组讨论,讲解概念、关键字,得出各自的性质。同时我在课堂更大限度的还给学生,充分发挥学生的主动积极性。

  集合的教案反思2

  这一课教学过程基本上实现了教学设计的意图,让学生体会到了"集合"这一基础数学思想在生活中实现运用,以及这一知识对解决我们生活的`实际问题的重要性。学生在整个教学过程能积极参与到数学活动中来,积极运用所学的知识解决问题,体会到数学知识的有用价值,同时也激发了学生学习数学的`兴趣和爱好。主要表现在以下几方面:

  一、创设问题情境,激发探索创新的兴趣。

  当学生解决两比赛一共有多少人时,答案有了争议,两种答案的学生都说出了自己的理由,学生的思维得到了碰撞,学生都想正确的答案是多少。而老师此时没有及时肯定哪个答案,而又创设了另一个问题情境,让学生设计图案来解决这个问题。从而使学生的思维得到了发展,提倡学生思维的开放性和创造性,鼓励学生根据自己的已有知识经验和独特体验,用自己的方法来发现创造。学生在一次次的肯定中,学习动机得到激励,进而产生更强的学习动机。

  二、注重知识的形成过程,提供学生实践操作的机会。

  现代教育理论主张"让学生动手去做科学,而不是用耳朵听科学。"因此教学要给学生留有足够的实践活动空间,教师是教学过程的组织者、引导者,使学生真正成为学习的主人。本节课创设了让学生设计图案,学生设计的图案很多。可见,创造源于实践,提供实践操作平台,激发学生学习数学的兴趣和热情的同时也培养学生的创新思维

  三、注重解决问题方法的多样化,发展学生思维。

  不同的学生有不同的思维方式以及不同的发展潜能。教学中关注学生的这些个性差异,应允许学生存在思维方式的多样化和思维水平的不同层次。本节课学生共用了5种方法来计算两个比赛一共有多少人?我也给学生足够的时间和空间,鼓励学生大胆地发表自己的观点和想法。新课改下的数学课不仅是让学生掌握固定的运算方法,也要发展学生的思维能力,让课堂焕发生命的活力。

  本节课虽然完成了教学目标,也有不足之处:

  1、强调过程与教学时间的矛盾依然存在。

  《数学新课程标准》十分强调数学教学要注重过程,强调学生的动手操作,实践感知,强调学生的体验,这是新课改的方向。我在本课设计中,比较注重过程,注重学生的体验,注重培养学生学习数学的兴趣。教学过程中让学生设计图案并填写名单,汇报就有少数同学说没写好。要是等所有的同学都写好,本课教学任务就很难完成,还有展示学生作品时,许多学生都设计得很好,由于时间的关系,不能一一展示。应该说强调过程与教学时间的矛盾仍然存在,但如何处理好强调过程与教学时间之间的关系,需要进一步地探索和研究。

  2、应该关注不同层次的学生。

  教学活动中教师是引导者、组织者,应该让所有的学生都参与学习中。这样才能让不同的学生有不同的收获。我在本课利用直观集合图说各部分表示的意义时,找了少数的同学说了一下,就过渡到下一环节。但到了后面的列算式解答时,学生根据直观图写出了不同的算式,说算式的意义时有同学不会说了。部分学生还没理解直观图左侧和右侧的意义。教师应组织学生讨论、交流三个部分的意义,学生印象深刻了,全体学生有了思考的过程,这样后面就不会出现问题了。

  集合的教案反思3

  集合这章内容,教学参考书上安排的课时为五课时,我们的导学案也是安排五课时,实际教学时,由于对学生的实际情况估计不足,第一课时的导学案用了两课时才完成。集合这一章的特点是概念不多,但这章所涉及到的内容很广,学生学习本章内容时,不仅要理解本章的概念,还要理解与本章内容相关联的其他内容,这些内容有初中学习过的内容、有生活中的方方面面的相关知识,再加上高中学习方法与初中不同,逻辑思维能力要求较高,因此学生感觉学起来比较困难。针对这种情况,我在实际教学时,首先要求学生准确理解概念,如:集合的元素具有三个性质:确定性、互异性、无序性。集合的关系、运算等都是从元素的角度定义的,所以解集合问题时,教会学生对元素的性质进行分析,反复训练,让学生通过实例体会这三个性质。

  第一,掌握相关的符号语言、venn图,正确使用列举法、描述法表示集合,特别要注意用描述法表示集合时,集合中的元素是什么,这是一个教学难点。第二个难点是集合的运算—交集和并集。突破难点充分运用数形结合思想,集合间的关系和运算,以数形结合思想为指导,借助图形思考,可以使各集合间的关系直观明了,使抽象的集合运算建立在直观的基础上,使解题思路清晰明朗,直观简捷,有利于问题的解决。

  第二,指导学生理解并掌握自然语言、符号语言、图形语言这三种语言,灵活准确地进行语言转换,可以帮助学生提高分析问题,解决问题的能力。

  第三,集合问题涉及到的其他内容,遇到了讲透,不拓展。