圆的面积教案八篇

孙小飞老师

圆的面积教案 篇1

  教学内容:

  苏教国标版五年级下册103-105页及练一练和练习十九1-3题。

  教材分析:

  本课时内容是在学生已掌握了圆的基本特征和圆的周长公式的基础上,引导学生探索并掌握圆的面积公式。通过3个例题教学,采用两种不同的的策略,推导出圆的面积,让学生充分感受到圆的面积公式推导过程的合理性。

  教学时,一要重点引导学生用数方格的方法计算圆面积及对相关数据进行分析和比较的过程中,发现圆的面积和以它的半径为边长的正方形面积之间的近似关系;二要把握两个关键环节:一是圆可以转化成过去所学过的什么图形;二是转化成的这个图形与原来的圆有什么联系。最后通过应用实践让学生运用知识解决实际问题的成功体验,增强学生学习数学的信心。

  学情分析:

  1、学生已有知识基础

  在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题。因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。

  2、对后继学习的作用

  圆面积的计算是今后学习圆柱、圆锥等内容的重要基础。

  教学目标:

  1、知识与技能:

  (1)理解圆的面积的含义。

  (2)经历圆的面积公式的推导过程,理解和掌握圆的面积公式。

  (3)培养学生分析、综合、抽象、概括的能力和解决简单实际问题的能力。

  2、过程与方法:

  经历圆的面积公式的推导过程,体验实验操作、逻辑推理的学习方法。

  3、情感与态度:

  感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识,培养学生学习数学的兴趣。

  教学重点:正确掌握圆面积的计算公式。

  教学难点:圆面积计算公式的推导过程。

  教学准备:

  1.CAI课件;

  2.把圆16等分、32等分和64等分的硬纸板若干个;

  教学设计:

  一、创设情境,提出问题。

  投影出示草坪喷水插图

  师:请大家观察这幅插图,说说从图中你能发现数学知识吗?

  学生观察、讨论并交流:

  生1:我能发现喷水头转动一周所走过的地方刚好是一个圆形。

  生2:这个圆形的半径就是喷头喷水的距离,也就是5米;周长就是喷水所走过的路线;

  生3:这个圆形的中心就是喷头所在的地方。

  师:请大家说说这个圆形的面积指的是哪部分呢?

  生4:被喷到水的草坪大小就是这个圆形的面积。

  师:今天这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。(板书:圆的面积)

  二、自主探究,合作交流:

  1、课件先出示一个正方形,再以正方形的一个顶点为圆心,边长为半径画一个圆,请学生观察:正方形的边长与圆的什么有关系?如果半径是r,正方形的面积是多少?

  板书:正方形的边长=圆的半径r

  正方形的面积=r2

  2、猜想:圆的面积是正方形面积的多少倍?你是怎样想的?

  3、教学例7

  ⑴谈话:刚才我们猜想圆的面积是正方形面积的3倍多,下面我们用数方格的方法来研究。

  ⑵课件出示例7第一幅图表,请同学们按照图表的要求数一数,算一算,把表格填完整,再在小组里交流。

  ⑶小组汇报(实物投影展示学生填写的表格)

  ⑷刚才我们通过一个圆验证了我们的猜想圆的面积大约是正方形面积的3倍多一些,而一个圆还不足以说明问题,我们再找两个圆用同样的方法验证。课件出示例7的第二幅图表,小组合作完成表格。

  ⑸小组汇报交流

  ⑹谈话:通过猜想、验证,我们都认为圆的面积是正方形面积的3倍多一些,我们知道正方形的边长等于圆的半径r,正方形的面积等于r2,那么圆的面积与它的半径有什么关系呢?

  板书:S=r2×3倍多

  [设计意图]

  让学生仔细观察正方形和圆的关系后大胆猜想圆的面积是正方形的多少倍,接着从学生熟悉的“数方格”初步验证猜想,为进一步探索圆的面积公式作准备,获得的结论与例8推导出来的公式互相印证,能使学生充分感受圆面积公式推导过程的合理性,加深对有关圆形转化方法的体会。

  三、动手操作,探索新知

  1.回忆平行四边形、三角形、梯形面积计算公式推导过程。

  (1)以前我们学习了平行四边形、三角形和梯形的面积计算公式。请同学们回想一下,这些图形的面积计算公式是怎样推导出来的?

  (2)通过回忆这三种平面图形面积计算公式的推导,你发现了什么?

  (3)能不能把圆转化为学过的图形来推导出它的面积计算公式呢?

  2.推导圆面积的计算公式。

  (1)拿出已准备好的学具,说说你把圆剪拼成了什么图形?

  (2)学生小组讨论。

  看拼成的长方形与圆有什么联系?

  学生汇报讨论结果。

  (3)课件演示:请看大屏幕,把圆分成16等份,拼成了近似平行四边形,再分成32等份,拼成近似的平行四边形,再分成64等份,拼成近似长方形,你发现什么?(如果分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。)

  (4)你能根据长方形的面积计算公式推导出圆的面积计算公式吗?

  生边答师边演示课件。

  生答:因为拼成的长方形的面积与圆的面积相等,长方形的长相当于圆周长的一半,宽相当于半径。

  因为长方形的面积=长×宽

  所以圆的面积=周长的一半×半径

  S=πr×r

  S=πr2师小结公式S=πr2,让学生小组内说说圆的面积是怎样推导出来的?

  (5)读公式并理解记忆。

  (6)要求圆的面积必须知道什么?(半径)

  四、联系实际,解决问题:

  1教学例9

  (1)课件出示例9;

  (2)说出已知条件和问题;

  (3)学生自己试做;

  (4)讲评,注意公式、单位使用是否正确。

  2师:“老师的家中新买了一张圆桌,你们想看吗?(教师用电脑显示图片)为了保护好桌面,我想为桌面配一块和桌面一样大的玻璃,但不知该画一块多大的玻璃?(电脑中标示出桌面直径)。

  五、全课总结,课后延伸:

  1、今天这节课你学到了什么?

  2、圆面积的计算方法,我们是怎样探索出来的?

  3、小结:这节课我们通过猜想、动手操作把圆转化成近似的长方形来验证猜想,这是一种重要的数学思想方法,希望大家在今后的学习中大胆猜想,勇于探索,解决生活中的数学问题。

  六、布置作业

  1.第107页的第1-3题。

  2.找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物直径(厘米)半径(厘米)面积(平方厘米)

  七、板书设计:

  圆的面积

  S=r2×3倍多

  长方形的面积=长×宽

  圆的面积=周长的一半×半径

  S=πr×r

  S=πr2

  教学反思

  本课时从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己的想象,从估计到公式的推导;从数方格到剪拼成学过的平面图形。在学生掌握了面积的含义及长方形、正方形等平面图形面积的计算方法,认识了圆,会计算圆的周长的基础上进行教学的,教学时遵循学生的认识规律,从学生的生活经验和已有的知识出发,重视学生获取知识的思维过程,。重点引导学生将圆割拼成已学过的图形,组织学生动手操作,让学生主动参与知识形成的过程,从而培养学生的创新意识、实践能力,发展学生的空间观念,从而正确掌握圆面积的计算公式。

圆的面积教案 篇2

  一、以旧引新(6分钟)

  1.复习正方形的面积公式和圆的面积公式。

  2.回答下面各圆的面积。

  1.说出S正=a2、S圆=πr2

  2.左圆面积=π×22=4π

  右圆面积=π×(2÷2)2=π

  1.边长是5cm的正方形面积是多少?

  5×5=25(cm2)

  2.如果r=4cm,则圆的面积是多少?

  3.14×42

  =3.14×16

  =50.24(cm2)

  二、动手操作,感知特点。(15分钟)

  1.探究外方内圆图形和外圆内方图形的特点。课件出示两种图形,

  思考:

  (1)外方内圆的图形是怎样组成的?它有什么特点?

  老师明确:外方内圆的图形称为圆外切正方形。

  (2)外圆内方的图形是怎样组成的?它有什么特点?

  老师明确:外圆内方的图形称为圆内接正方形。

  2.引导学生画一个边长为8cm的正方形,然后在这个正方形内画一个最大的圆。

  3.引导学生在圆内画一个最大的正方形。

  4.将图形分解,分解为同一个圆的外切正方形和内接正方形两个组合图形。

  1.

  (1)外方内圆的图形是一个正方形内有一个最大的圆,圆的直径等于正方形的边长。

  (2)外圆内方的图形是一个圆内有一个最大的正方形,正方形的对角线等于圆的直径。

  2.小组合作讨论交流,然后说一说自己是怎么画的——以正方形的边长为直径画一个圆,正方形对角线的交点是这个圆的圆心。

  3.小组合作讨论交流,说出作图的方法并明确:正方形的对角线等于圆的直径。

  4.小组合作,将一个图形分解为同一个圆的外切正方形和内接正方形两个组合图形。

  3.请画出一个半径是4cm的圆,并画出它的外切正方形和内接正方形,并说明画法。

  三、探究思考,解决问题。(10分钟)

  1.计算圆外切正方形与圆之间部分的面积。

  (1)课件出示半径为1m的圆外接正方形。组织学生讨论计算方法。

  (2)组织学生算出正方形和圆之间部分的面积。

  2.计算出圆内接正方形与圆之间部分的面积。

  课件出示半径为1m的圆的方形组合图形,组织学生讨论计算方法。

  1.

  (1)观察图形的特点,讨论计算方法并尝试汇报交流。

  (2)分别算出这个圆和正方形的面积:

  S圆=3.14×12=3.14m2

  S正=2×2=4m2

  S阴=S正-S圆

  =4-3.14

  =0.86m2

  2.观察图形,发现圆的半径与正方形的关系,讨论计算方法并尝试汇报交流。

  4.王师傅做一个零件,零件的形状是圆内接正方形,已知圆的直径为12cm,你能计算出正方形的面积吗?

  四、拓展应用。(5分钟)

  1.如下图,已知圆的半径是3cm,求这个圆和正方形之间的面积。

  2.下图中正方形铜球的直径是22.5mm,中间正方形的边长是6mm,求这个铜球的面积是多少?

  1.读题,审题,明确题意后,尝试独立完成。

  2.独立完成,然后全班汇报。

  5.计算阴影部分的面积。

  ×102π-102≈57(cm2)

  五、全课总结。(5分钟)

  1.谈谈这节课你有哪些体会。

  2.布置作业。

  学生谈本节课学习的收获。

  教学过程中老师的疑问

圆的面积教案 篇3

  教学目标:

  1、学生通过观察、操作、分析和讨论,推导出圆的面积公式。

  2、能够利用公式进行简单的面积计算。

  3、渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  教学重难点:渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。

  教学过程

  一、尝试转化,推导公式

  1、确定“转化”的策略。

  师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?

  引导学生明确:我们是用“割补法”将平行四边形转化成长方形的方法推导出了平行四边形的面积计算公式。

  师:同学们再想想,我们又是怎样推导出三角形的面积计算公式的呢?

  师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。

  2、尝试“转化”。

  师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)

  请大家看屏幕(利用课件演示),老师先给大家一点提示。

  师:(教师配合课件演示作适当说明)如果我们把一个圆形平均分成16份(如图三),其中的每一份(如图四,课件闪烁其中1份)都是这个样子的。同学们,你们觉得它像一个什么图形呢?

  师:是的,其中的每一份都是一个近似三角形。请同学们再想一想,这个近似三角形这一条边(教师指示)跟圆形有什么关系呢?

  引导学生观察,明确这个近似三角形的两条边其实都是圆的半径。

  师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!

  预设:学生利用这种近似三角形拼组图形会有一定的难度,教师要加强巡视和有针对性的指导,既鼓励学生拼出自己想象中的图形,又要引导他们拼出最简单、最容易计算面积的图形。一般情况下,学生会拼出如下几种图形(如图五、图六、图七)。

  3、探究联系。

  师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。

  预设:

  分组逐个展示,并将其中“转化”成长方形的一组的作品贴在黑板上。如果有小组转化成了不规则的图形,教师应及时引导他们转化为我们已学过的平面图形。

  师:好,各个小组都不错。现在请同学们思考一个问题:你们把一个圆形“转化”成了现在的图形之后,它们的面积有没有改变?请小组内讨论。

  师:谁来告诉大家,它们的面积有没有改变?

  师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。

  师:虽然我们现在拼成的是一个近似的长方形,但是如果把圆等分成32份、64份、128份、256份……一直这样下去分成很多很多份,拼成的图形就变为真正的长方形(课件演示,如图八)。

  4、推导公式。

  师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。

  师:好,同学们,谁能首先告诉老师,这个长方形的宽是多少?

  预设:

  根据学生的回答,教师演示课件,同时闪烁圆的半径和长方形的宽,并标示字母r,如图九。

  师:那这个长方形的长是多少呢?(教师边演示课件边说明)这个长方形是由两个半圆展开后拼成的,请大家看屏幕,这个红色的半圆展开后,其中这条黄色的线段就是长方形的长(如图十),请同学们仔细观察(课件继续演示如图十一,半圆展开后再还原,再展开,),这个长方形的长究竟与圆的什么有关?究竟是多少呢?

  预设:

  教师引导学生明白:这个长方形的长与圆的周长有关,并且是圆的周长的一半(如果学生有困难的话,教师利用课件演示,如图十二)。并且让学生通过计算得出长方形的长就是πr。

  师:现在我们已经知道了这个长方形的长和宽(如图十三),它的面积应该是多少?那圆的面积呢?

  预设:

  老师根据学生的回答进行相关的板书。

  师:你们真了不起,学会了“转化”的方法推导出圆的面积计算公式。现在请大家读一读,记一记,写一写圆的面积计算公式。

  二、运用公式,解决问题

  1、教学例1。

  师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

  预设:

  教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

  2、完成做一做。

  师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。

  订正。

  3、教学例2。

  师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

  师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

  师:找到解决问题的方法了吗?

  师:好的,就按同学们想到的方法算一算这个圆环的面积吧!

  预设:

  教师继续对学困生加强巡视,如果还有问题的学生并给予指导。

  交流,订正。

  三、课堂作业。

  教材第70页第2、3、4题。

  四、课堂小结

  师:同学们,通过这节课的学习,你有什么收获?

  课后作业:完成数练第31页。

圆的面积教案 篇4

  教学内容:六年制小学数学教科书第十一册第一单元《圆的面积》中的第一节课,数学 - 圆的面积(一)。

  教学目的:

  1.通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。

  2.能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。

  教学重点:理解和掌握圆面积的计算公式的推导过程

  教学难点:圆面积计算公式的推导

  教学过程:

  一 、创设情境,提出问题

  ( 课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。(生看完提问题)

  生:1羊走一圈有多长?2羊最多能吃到多少草?3羊能吃到草的最大面积是多少?

  二、引导探究,构建模型

  A:启发猜想

  师:羊吃到草的最大面积最大是圆形:1、这个圆的面积有多大猜猜看;2、试想圆的面积和哪些条件有关?3、怎样推导圆的面积公式?(生试说)

  B:分组实验,发现模型

  学生分小组将平均分成16等分、32等分的圆放在桌上自由拼摆,拼成以前学过的平面图形摆好后想一想:1、你摆的是什么图形?2、你摆的图形与圆的面积有什么关系?3、图形各部分相当于圆的什么?4、你如何推导出圆的面积?

  请小组长汇报拼摆的情况,鼓励学生拼摆成不同的平面图形(师课件展示动画效果)可以拼摆成长方形、梯形、三角形、平行四边形四种情况,小学数学教案《数学 - 圆的面积(一)》。

  三、 应用知识,拓展思维

  1师:要求圆的面积必须知道什么?

  2 运用公式计算面积

  A完成羊吃草的面积

  B完成课后“做一做”

  C一个圆的直径是10厘米,它的面积是多少平方厘米?

  D找出身边的圆,同桌合作量一量半径,算一算面积(完成实验报告单)

  测量物直径(厘米)半径(厘米)面积(平方厘米)

  3应用知识解决身边的实际问题(知识应用)

  下面是一个体育场的平面图,请你算一算跑道的周长是多少米?长方形体育场的占地面积是多少平方米?学校要请师傅给体育场铺草皮,已知每平方米的草皮是2.4元,学校一共要付多少钱才能完成?

  四 归纳总结,完善认知

  今天学了什么,这些知识我们是用什么方法学来的,你懂得了什么?

圆的面积教案 篇5

  教材分析

  圆的面积是在初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,因为以后学习圆柱、圆锥的知识打下基础。学生已有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆现象、勇于实践。在操作中将圆转化为已学过的平面图形,从中找到圆的面积与半径、直径的关系。

  学情分析

  学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感体验和感受数学的价值。

  教学目标

  1、知道圆的面积的含义,理解和掌握圆的面积的计算公式,能够正确的计算圆的面积。

  2、理解圆的面积公式的推导过程,理解转化的数学思想。

  3、根据圆的半径或者圆的直径来计算圆的面积,解决简单的有关圆的面积计算的实际问题。

  教学重点和难点

  重点:使学生知道圆的面积的含义,理解和掌握圆面积的计算公式,并能正确计算圆的面积。

  难点:理解圆的面积公式的推导过程,掌握转化的数学思想。

圆的面积教案 篇6

  教学内容:小学数学义务教育教材第十一册p129---p130

  教学目的:

  1、通过操作,引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。

  2、激发学生参与整个课堂教学活动的学习兴趣,培养学生的分析、观察和概括力,发展学生的空间观念。

  3、渗透转化的数学思想和极限思想。

  教学重点:圆面积公式的推导。

  教学难点:弄清圆与转化后的近似图形之间的关系。

  学具:每四人小组一个彩色圆(教师分好8等分点)、两三个圆、固体胶、卡纸、剪刀。

  教具:课件。

  教学过程:

  一、谈话揭题:

  出示图:

  你看到了什么?刚才同学们提到的圆的面积就是今天这节课我们要来研究的内容。(出示课题:圆的`面积)那么圆的面积和什么有关?(半径、直径)

  二、新课教学:

  1、猜测:

  现在请大家看,这儿有一张正方形的纸,(课件演示)用它剪一个最大的圆,(课件演示)如果圆的半径用r来表示,你知道原来正方形的面积怎么求吗?(2rx2r)整理一下(板书:2rx2r=4r的平方)(按虚线)我们再来看看图,你明白了什么?这样看来,正方形的面积是r的平方的4倍,那么,现在请你猜猜看,圆的面积大概会是多少?

  2、验证:

  (1)现在我们都认为圆的面积是r的平方的三倍多一点,那么,圆的面积与r的平方到底有怎样的关系呢?你们准备用怎样的方法来研究它呢?下面请四人小组讨论一下,可以动用桌子上的学具。(教师巡视)

  (2)反馈:(三分钟后,低到高)

  a:你们为什么不动?你们又是怎么想的?(平均分成若干份,拼成我们学过的图形来研究)同意吗?

  b:这儿有一个圆,我们把它平均分成四份,可以吗?那么怎么拼呢?(学生拼,投影演示)看看象什么图形?(平行四边形)象吗?我看不象。怎样使它象呢?(分的份数多一点)刚才我们拼的图形象平行四边形,当然,可能还能拼成别的图形。

  c:刚才我们讨论研究出来的方法第一步是等分,第二步是想一想拼成什么图形,再拼一拼,第三步是推导。(板书:等分想、拼推导)当然,也可以用别的方法。(板书箭头)

  (3)操作:

  你们想试一试吗?现在请组长拿出信封,倒出里面的圆片,我们以四人小组为单位动动手。(小组讨论操作,师巡回指导:表扬拼出与别组不一样图形的小组,提示拼好后可以用胶水粘住。)

  3、小组汇报:(举起把圆等分成8份、16份所拼成的长方形或平行四边形给学生看一看,再请平均分成16份拼成长方形或平行四边形的同学汇报)

  (1)学生汇报。

  (2)有没有疑问?

  拼成的长方形是真正的长方形吗?为什么?(边是曲线)

  如果把一个圆等分成32份,拼成的长方形会怎样呢?(课件演示)等分成64份,又会怎么样呢?(课件演示)如果等分的份数更多,又会怎样呢?你能得出什么结论?(圆等分的份数越多,拼成的图形越接近于长方形)

  (3)板书:

  那么长方形的面积是怎么求的?(板书)它的长相当于圆的什么?怎么用字母表示?宽呢?(课件演示:在长方形或平行四边形64等分图的下面出示r,右边出示r,同时板书)那么圆的面积=rxr=r的平方。

  (4)还有补充吗?

  小组汇报:平行四边形、三角形、梯形面积转化为圆的面积公式。(实物投影仪下显示,最后写成r的平方,14bd的平方)

  4、小结:通过刚才我们四人小组的活动,大家有什么结论?(不管拼成什么图形,都能推导出圆的面积是r的平方)那么知道什么可以求出圆的面积?(半径、直径、周长)

  三、巩固练习:

  1、出示:课本p1302(1)(3)(课件演示)会吗?(草稿本上算,投影反馈)

  2、现在来看这个图形(猜测题)如果r=5厘米,你能求什么?(圆面积、正方形的面积、剩下的纸的面积)请你草稿本上算一算。(投影反馈)或口答。

  四、机动练习:

  教师准备一些实物,分发给四人小组:你们能求出它们的面积吗?(反馈)还可以测什么数据算面积?

  五、全课小结:

  今天这节课给你印象最深刻的一点是什么?

圆的面积教案 篇7

  教学内容:教科书第107页练习十九第2-5题

  教学目标:

  1、通过练习,使学生进一步掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2、进一步培养学生运用已有知识解决新问题的能力,体验圆形与生活的联系,感受平面图形的学习价值,提高数学学习兴趣和学好数学的自信心。

  教学重点:进一步掌握圆的面积公式,能正确计算圆的面积

  教学难点:能正确计算圆的面积,并能应用公式解决相关的简单实际问题

  教学流程:

  一、基本练习:

  1.计算下面各圆的面积。r=4分米d=10厘米r=6米d=14米

  2、引入谈话。师:今天我们继续学习圆的面积计算。

  二、综合练习

  1、完成练习十九第2题。要求:“铁饼投掷圈的面积比铅球投掷圈的面积大多少平方米?”首先要知道什么?根据直径怎样求出圆的面积?

  2.完成练习十九第3题。根据圆的周长怎样求出圆的半径呢?

  3、完成练习十九第4题。要求圆桌面面积必须知道什么?根据哪个求圆桌面的半径?

  4、完成练习十九的第5题。师追问:圆的面积和周长是怎样算的?分别指的是什么:

  意义上有什么不同?

  三、课堂总结

  师:生活中有很多东西的形状是圆形的,有时需要计算它的面积或周长,谁能说说在实际运用中需要注意什么?

圆的面积教案 篇8

  教学内容:

  圆的面积(2)

  教学目的:

  5、使学生能够正确并灵活的运用公式进行计算。

  6、培养学生观察、比较、分析、综合能力并培养学生合作意识。

  7、领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辩证思维方法。

  教学重点:

  1、学生能够正确并灵活的运用公式进行计算。

  2、培养学生观察、比较、分析、综合能力并培养学生合作意识。

  教学难点:

  使学生能够正确并灵活的运用公式进行计算。

  教学过程:

  1、说一说你的计算方法:

  r=3,c=_______

  s=_______

  2、上节课我们研究了圆的面积,如果求圆的面积需要知道什么条件?怎么求?(需要知道r可以直接用公式计算。)

  板书:

  3、导入:如果知道直径或周长,你能求出圆的面积吗?还有哪些图形的面积需要运用圆的面积的知识来解决的呢?今天我们继续研究有关圆的面积的知识。

  板书:圆的面积

  (一)研究圆的面积的计算方法:

  1、出示例4:街心花园中的圆形花坛周长是18.84米,花坛的面积是多少平方米?

  (1)学生读题。

  (2)学生试做。

  (3)全班汇报。

  18.84÷3.14÷2=3(米)

  3.14×32=28.26(平方米)

  答:花坛的面积是28.26平方米?

  (4)师问:3米表示什么?

  28.26表示什么?

  为什么两个单位名称不同?

  小结:看来,我们要想求圆的面积需要先求出圆的半径。

  2、反馈:

  清华附小有一个圆形花圃,它的直径是8米,它的面积是多少平方米?

  (1)生试做。

  (2)小组交流。

  (3)全班交流。

  小结:通过刚才两道题的练习,我们对圆的面积的计算又有了新的认识,知道周长或直径也能求出圆的面积,看来事物间是相互联系的。

  (二)研究环形面积的计算方法:

  1、出示例5:右图中涂色部分是个环形,它的内圆半径是10厘米,外圆半径是15厘米,它的面积是多少平方厘米?

  (1)学生读题。

  (2)观察:

  a:哪里是内圆和内圆半径?你能指一指吗?

  b:哪里是外圆和外圆半径?你能指一指吗?

  外圆是由哪几部分组成的?

  C:哪里是环形面积?

  D:请你观察环形有什么特点?生活中在哪里见到过环形?

  (同一个圆心;由内圆和外圆之分;环形是一个中间镂空的圆环)

  (3)你打算怎样求出环形面积?(学生讨论)

  (4)学生试做。

  (5)全班汇报:

  a:外圆面积:3.14×152=706.5(平方米)

  b:内圆面积:3.14×102=314(平方米)

  c:环形面积:706.5-314=392.5(平方米)

  答:它的面积是392.5平方厘米?

  (6)你是怎样求的环形面积?你能列出综合算式解答吗?

  板书:3.14×152-3.14×102=392.5(平方米)

  (7)小结并质疑:

  根据环形的特点,我们可以用外圆面积减内圆面积的方法求出环形的面积。你还有其他方法求出环形的面积吗?小组讨论。

  (8)全班汇报:

  根据综合算式3.14×152-3.14×102=392.5(平方米),我利用乘法分配率推出了3.14×(152-102)=392.5(平方米)也就是用(R2-r2)π=S环

  板书:S环=(R2-r2)π

  (9)小结:你们自己发现了两种方法计算环形的面积,你们可真够棒的。

  (10)判断:用算式(15-10)2×3.14计算环形面积可以吗