冀教版六年级数学教案

马振华老师

冀教版六年级数学教案

  教学内容:冀教版《数学》六年级上册第92、93页。

  教学目标:

  1、结合具体情境,经历运用圆的面积公式解决实际问题的过程。

  2、能灵活运用圆的面积公式解决已知周长求面积的简单问题。

  3、感受数学在解决问题中的价值,培养数学应用意识。

  课前准备:一个蒙古包图片

  教学过程:

  一、问题情境

  1、师生讨论引出蒙古包,教师贴出图片让学生观察。提出:你能想到哪些和数学有关的问题,给学生充分的发表不同问题的机会。

  师:同学们,在草原上有一种非常特别的房子,你们知道叫什么吗?

  生:蒙古包。

  师:对,蒙古包。看,老师带来了一张蒙古包的图片。

  图片贴在黑板上。

  师:观察这个蒙古包,你都想到了哪些和数学有关的问题?

  2、提出:要计算蒙古包的占地面积,怎么办?师生讨论,得出:测量直径不好测,可以测量出周长,再计算占地面积。教师给出周长数据。

  师:如果要计算蒙古包的占地面积,怎么办?

  生:测量出蒙古包的直径,就能计算出它的占地面积。

  师:对。测量出直径就能求出它的面积。大家来观察这个图片,这个蒙古包的直径好测量吗?

  生:不好测量。

  师:对,从外面没法测量。从里面测量一方面屋子里有东西不好量,另外也不容易测量准确。测量直径不行,还有其它方法吗?

  生:测量出周长。

  师:对,周长容易测。草原上的人们也想到了这个办法,他们测量出蒙古包的周长是18.84米。

  板书:周长18.84米。

  二、解决问题

  1、提出:已知周长,怎样求蒙古包的占地面积?学生讨论,理清思路后,自主计算。

  师:现在知道了蒙古包的周长,怎样求蒙古包的占地面积呢?同学们讨论一下。

  学生讨论。

  师:谁来说说已知圆的周长是多少,怎样求圆的面积?

  生:先利用圆的周长公式求出半径,再利用圆的面积公式计算出面积。

  学生说不完整,教师参与交流。

  师:解题思路大家都清楚了,请同学们在本上算一算这个蒙古包的占地面积。

  学生独立计算,教师巡视并指导。

  2、交流计算的过程和结果,重点说一说是怎样算的。教师板书出计算的过程。 师:哪位同学说说你是怎么解答的?先算的什么,再算的什么?

  生:我先计算出蒙古包的半径,列式2×3.14×r=25.12求出r=4,再计算蒙古包的占地面积3.14×42=50.24(平方米)

  学生说的同时,教师板书:

  蒙古包的半径:

  2×3.14×r=25.12

  r=25.12÷6.28

  r=4

  蒙古包的占地面积:

  3.14×42=50.24(平方米)

  如果出现先算出直径再求面积的方法,教师首先予以肯定,然后提示。已知周长求面积,先直接求出半径,计算比较方便。

  三、课堂练习

  1、“练一练”第1、2题,蒙古包占地类似的问题,让学生自己读题,并解答。

  师:我们解决了蒙古包的占地问题,下面,请看练一练第1题,自己读题,并解答。

  学生独立完成,教师个别指导。

  师:谁来说一说你的做法,这个蓄水池的占地面积是多少?

  生:我先求出这个蓄水池的半径3.14×2×r=31.4求出r=5,再计算蓄水池的占地面积:3.14×52=78.5(平方米)

  师:看第2题,求花池的面积。自己解答。

  交流时,请学习稍差的学生回答。

  答案:3.14×2×r=18.84

  r=3

  3.14×32=28.26(平方米)

  2、练一练第3题,提示学生思考木桶铁箍长是底面的什么,再计算。 师:请同学们读第3题,想一想,这个木桶铁箍的长是这个木桶底面的什么?再解答。.

  学生完成后,指名汇报。答案:

  3.14×2×r=100.5

  r=16

  3.14×162=803.84(平方厘米)

  3、“练一练”第4题。结合书中的插图,弄清活动要求,然后让学生课下完成。师:读一读第4题.谁知道树的横截面指的是什么?

  生:就是把树锯断后的圆面。

  师:树木的周长相当于这个横截面的什么?

  生:周长。

  师:这个问题同学们课下解决。可以几个人一起测量,也可以自己完成测量,然后计算出那棵树的横截面面积。在我们的生活中,有很多类似的数学问题,可以用我们学到的'知识来解决。只要你多观察,多动脑,就一定会越来越聪明。下面看问题讨论中的问题。自己读一读。

  学生读题。

  师:用同样长的铁丝,分别围成一个正方形和一个圆。围成的图形哪个面积大?就这个问题,谁想发表一下自己的意见?

  学生可能出现不同意见,都不做评价。

  四、问题讨论

  1、让学生阅读“问题讨论”的内容,启发学生按照聪聪的思路进行小组讨论和试算。

  师:怎么研究这个问题呢,聪聪给我们提供了一个很好的思路:假设铁丝的长度。比如,铁丝长1米,2米或3米,4米等,实际算一算,再看看结果是什么。好,现在同学们小组合作,按聪聪的办法算一算。

  学生合作研究,教师参与指导。

  2、全班交流,重点说一说思考的过程和举例计算的结果。使学生认识到周长相同的平面图形中,圆的面积最大。 师:谁来说一说你们假设铁丝的长度是多少,计算的结果是什么?

  学生可能出现不同的假设。如:(1)假设铁丝长1米。

  正方形的边长:1÷4=0.25=25(厘米)

  正方形面积:25×25=625(平方厘米)

  圆半径:100÷2÷3.14≈16(厘米)

  圆面积:3.14×162≈803(平方厘米)

  结论:圆的面积大

  (2)假设铁丝长2米。

  正方形的边长:2÷4=0.5=50(厘米)

  正方形面积:50×50=2500(平方厘米)

  圆半径:200÷2÷3.14≈32(厘米)

  圆面积:3.14×322≈3215(平方厘米)

  结论:圆的面积大

  (3)假设铁丝长4米。

  正方形的边长:4÷4=1(米)

  正方形面积:1×1=1(平方米)

  圆半径:4÷2÷3.14≈0.64(米)

  圆面积:3.14×0.642≈1.29(平方米)

  结论:圆的面积大

  3、提出:长方形和圆周长相等时,哪一个图形面积大?师生讨论,使学生了解,圆的面积大。

  师:我们以前研究过长方形和正方形周长相等时,正方形的面积大,今天我们又知道了正方形和圆周长相等时,圆的面积大,现在,老师有一个问题,长方形和圆的周长相等时,哪一个图形的面积大?说出判断理由。

  生:肯定圆的面积大。假设长方形、正方形、圆周长都相等。圆面积大于正方形,正方形面积大于长方形,那圆肯定大于长方形。学生说不完整,教师说明。