数学《不含括号的混合运算》教学反思

王明刚老师

数学《不含括号的混合运算》教学反思1

  本节课是计算课,如何在平凡的计算中体现教师的新意,发展学生的能力,是设计中的一个重点。

  在开始的例题中,我为学生提供了交流展示的平台,通过讨论、互动、板演、充分暴露学生的思维,在合作交流中探索出先乘除后加减的规律,在汇报交流中教师十分尊重学生的思维方法,并学会赏识他人,完善自己,不断获得积极的数学学习的情感和体验。

  要掌握计算的算理并不难,可是真正让学生明白其中的算理却是难事。因此从情境中提炼数学知识并通过自己的生活经验来解决,从而得出算理是再自然不过的事了。这样的教学自然、贴切、学生乐于接受,学习的效果也比学生死记硬背强多了。本节课教得轻松,但从作业反馈来看,不是很理想。有的学生竟然连65+120也不会做了。

数学《不含括号的混合运算》教学反思2

  今天开始教学三步混合运算,在设计中重点引导学生理解运算顺序,还特意设计了:12×3+15×4=36+15×4=51×4=204元的错例分析,然而在课堂上,却没有出现这样的情况,反而在如何解决例题时出现了两种不同的方法:方法一:12×3+15×4;方法二:(12+15)×(3+4)。为了明确学生对数量关系的理解,就重新调整了教学环节,重点引导学生对两种解题方法进行辨析。

  第一步:了解学生对两种算法的态度,通过统计发现大部分学生赞同第一种解法,有部分学生不置可否,还有3个同学坚持第二种方法也是正确的。

  第二步:分析每一步计算的意义。第一种方法很快就被全体学生认可。第二种方法还是有不少学生表示困惑。为了解决这个问题,就借助了简图帮助学生理解。(△+○)表示一副象棋和一副围棋的`价钱,(△+○)×(3+4)=(△+○)×7,这时表示的是什么?学生经过思考得出这样计算得到的结果表示7副象棋和7副围棋的总价,和题意不相符,所以是错误的。

  经过这样的调整,学生基本对这个数量关系有了比较明确的认识。在后面的教学中,又发现学生对实际问题中的数量关系不是很清楚,所以在数量关系的分析上又花了不少的时间,例如人均居住面积等。

  所以这节到底突出了什么重点似乎很难说了,似乎数量关系的分析倒成了重点了。计算课中计算能力的培养与解决实际问题能力的培养有时真的很难调整好,困惑之中。

数学《不含括号的混合运算》教学反思3

  非常巧合四年级上学期我所上教研课的内容也是《混合运算》,感觉这两节课在编排上有许多的类似之处:从生活情景入手理解混合运算的顺序、试一试、改错中体会混合运算的注意点、对比练习中明白运算符号不一样引起运算顺序的不一样、在解决问题的过程中体现混合运算的价值等等。明显感觉四下的混合运算虽然计算的步数比较多,但是学生有递等式书写格式和两步计算的经验,新课学习非常轻松。 教学中我从复习两步计算的混合运算入手,让学生说出熟悉的两步混合运算的顺序,为教学三步计算的混合运算扫清知识障碍。然后直接出示一道三步的混合运算,让学生观察与原先的算式有什么不一样,该怎样算?这一环节让学生体会到新学习的三步计算的混合运算与两步计算有着内在的联系,可以把三步运算转化为两步运算;直觉意识到三步计算的混合运算与两步计算的混合运算都要先算乘除法、再算加减法(不含括号)。

  教材中新课的学习研究就是从商店购物这一学生熟悉的场景开始的。中国象棋每副12元、围棋每副15元,李老师买2副中国象棋和3副围棋一共用了多少钱?教材中只给了一个问题,多数学生列出12×2+15×3后能够结合情境理解计算的顺序,但是这时候引导学生总结计算的顺序感觉特别地单薄,所以我又增添了两道混合运算:12÷2-15÷3、12×2+15÷3这两道算式,并给学生提供了多条信息:中国象棋每副12元、围棋每副15元、中国象棋一共12元、围棋一共15元、买2副中国象棋3副围棋。让学生根据算式选择合适的信息,看看能够解决什么问题。学生能够很快说出每道算式先算什么,但是通过讨论才比较勉强地说出了算式的含义。一方面感觉学生的问题意识不强,另一方面觉得这样的设计是不是徒增了学习的困难,如果没有丰富的素材该怎样引导学生来总结运算的顺序?

  从学生的练习情况来看,没有括号的三步混合运算,先乘除后加减的顺序基本都掌握。想想做做的第一题有4小题,学生出现的典型错误是第4小题,当三步计算转化为两步计算后出现了“减在前、加在后”的情况,学生习惯于加减的口头表达顺序,计算时不由自主地就先算加后算减了。课中我没有完成书中的改错题而是结合学生此处的错误进行了重点评讲。

  这一环节我还引导学生做了一个梳理,不含括号的三步混合运算按什么步骤来解答:一、看(观察算式中有哪些运算)二、画(把先算的一步画出来)三、写。不能让学生的观察流于形式,一定得让他们经历这样一个画的过程,久而久之学生才能养成认真审题的好习惯。

  家庭作业中发现学生的错误比较多,计算的顺序不存在问题,多数是一步计算或口算不过关,与众多的计算教学一样的,需要在提高计算的正确率上下功夫。