《列方程解决简单实际问题》的教学反思范文

张东东老师

  《列方程解决简单实际问题》的教学反思1

  列方程解决简单实际问题,是在五年级(下册)初步认识方程,会用等式的性质解一步计算的简单方程的基础上进行教学的。是新课标教材中使用比较多的一种解决逆思维的实际问题的解题方法,它改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础。通过我的教学实践,我觉得学生在学习这个单元的过程中,还要注意以下几个方面的问题:

  一.重视关键句分析训练,提高学生的分析能力。

  解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中直接的相等关系,这样可以便于学生列出方程,解答问题。接着通过练习和思考,学生就会很快掌握类似这样的的实际问题。因此学生如果学会抓住关键句来分析与思考,能很快提高解题能力。

  二.重视学生的语言训练,提高学生的表达能力。

  在分析关键句的同时,我们要通过找出关键句、用语言分析关键句,提高学生的思维能力,例如:在“爸爸的年龄是小红的4倍,爸爸比小红大24岁。爸爸和小红的年龄各是多少?”这一题中,先让学生说说单位“1”的量以及怎样设。再根据哪一句可以找出数量间的相等关系。我在教学中采用小组交流相互补充和提高,多次通过语言表达训练学生分析关键句、列出相等关系的口头表达能力,让学生在学习的过程中掌握探究知识的方法。

  《列方程解决简单实际问题》的'教学反思2

  本课是在学生认识了方程,学会解只含有一步计算的方程的基础上,运用等量关系列方程解决简单的实际问题。列方程解决实际问题既是解决问题的一种策略,又是十分重要的数学思想方法,对以后的数学乃至其他一些学科的学习发挥着基础作用。例题本身是一道需要逆向思考的减法实际问题,教材也比较完整的呈现了列方程解决这个实际问题的步骤,其中解方程的过程留给学生去完成。教学时引导学生列出不同的方程解决问题,让学生感受列方程方法的多样性。我认为本课的关键是教会学生会根据题意找出数量关系,并列出相应的方程。

  因此要做到:

  1、现在学生相对的分析说明能力比较薄弱,针对这一点,我让学生多观察以及及时的分析说明,可以培养学生的观察能力、理解能力及分析能力。

  2、等量关系的寻找对于列方程解决实际问题是很重要的,针对它的重要性,我相机渗透了一些简单的寻找等量关系的方法,并要求学生每一题都要说一说数量关系。既加深了学生对于学习方程时对数量关系的重视,也在间接的培养学生的解题能力。

  3、列方程解决实际问题是学生第一次接触,一般的步骤是必须要遵守的,老师可以让学生模仿老师的书写格式,虽然是模仿,但也算是有接受的学习,一方面让学生自主探索,一方面也让学生有计划的记忆。在解题以及展示过程的过程中,尽量让学生多说,要让学生充分发挥主动性,真正发挥学习的主体作用。

  4、强调了算术方法与方程的区分。通过例题与试一试的练习,让学生发现每道题实际上都可以找出三个数量关系,根据这三个等量关系式,可以列出三个方程,但是,其中有一种方程是x单独在“=”的左边或者单独在“=”的右边,这种情形要避免,因为,这种列方程实际上是在用算术方法解题,而不是方程的方法,这样就和算术解法差不多了,方程也就失去了它的意义。

  《列方程解决简单实际问题》的教学反思3

  “列方程解决简单的实际问题”的教学,既要让学生掌握列方程解决简单实际问题的一般过程,学会列方程解决一步计算的实际问题,更要让学生学会思考解决问题的方法。

  列方程解决简单的实际问题,和用算式方法解决简单的实际问题有不同的地方,除了形式上的不同,更有思考方法上的不同。教材安排的“例7”是一幅情境图,理解图的意思是必须的,我的教学中引导学生进行摘录:小刚的跳高成绩是1.39米,比小军的跳高成绩少0.06米,小军的跳高成绩是多少米?情境图虽然直观,但表达的信息零星,需要整理,整理也是学好数学的重要方法,其中摘录是常用的整理方法。理解情境图的意思是解决实际问题的前提条件,算式方法、方程方法都必须有这一环节。

  “含有未知数的等式是方程”。方程既然是等式,就要从数量间的相等关系入手思考,上题可以从关键句“小刚的跳高成绩比小军少0.06米”寻找,这句话蕴含的数量间的相等关系有二:一是小军的跳高成绩-0.06米=小刚的跳高成绩;二是小军的跳高成绩-小刚的跳高成绩=0.06,应用“大数-小数=相差数”这一规律悟得。

  在明确题中数量间的相等关系的基础上,教师指出:“小军的跳高成绩不知道,可以设为x米,再列方程解答。”这里教师的讲授,就是为了让学生体验列方程解决要把未知量与已知量结合起来进行列式,体验和算式解决问题的不同。到此,形成了“整理信息—找相等关系—列方程”的思维框架。至于“列方程解决简单的实际问题”的书写格式,可以通过模仿课本、讨论交流、教师指导、作业反馈来熟悉,熟悉“写设句-列方程-解方程—检验写答句”是列方程解决实际问题的一般步骤。

  第一堂课学生的课堂作业有许多毛病,如:解写了两个,“设”前面写了一个,解方程时又写了一个;假设未知数x时后面缺了单位;求得的未知数的值的后面多了单位等等。虽然有诸多的问题,但利用课间小组长的力量和练习课的专门辅导,基本得到全面解决。

  “列方程解决简单的实际问题”是用方程方法解决问题的起始阶段,让学生明晰“整理信息—找相等关系—列方程”的思维框架,有着重要的意义,学生们可以用这样的思维框架去用方程解决简单的、复杂的实际问题。还有,要重视找数量间相等关系方法的积累,如根据“部分数+部分数=总数”、公式、常见的数量关系式等去寻找。

  长此以往,随着解决问题经验的不断丰富,数学学科的质量也会同步提高!