《数学思考》教学反思

莉落老师

  《数学思考》教学反思新课程改革以后,每册教材中都增设了一个内容,那就是《数学广角》。这个内容的增设,渗透了一些数学思想方法:排列、组合、集合、等量代换、统筹优化、数学编码、抽屉原因等,这些数学思想方法对于开发学生的智力,发展学生的能力,促进学生的进一步发展都是有利的。

  总复习中也有这一块内容,由于这部分内容涉及的知识多,且难度比较大,所以在复习时不可能像前面那些知识一样进行系统的整理,只能对一些主要的内容进行必要的复习,所以在这个内容的复习中,我关键就渗透一个重要思想:化难为易。

  复习中选取的找规律、排列组合、逻辑推理都是学生今后学习数学要用到的重要的数学思想方法。为了降低学生的思维难度,教学中采用了列表、图示等方式,把抽象的数学思想方法尽可能直观地显示给学生。在学习这个内容前,我请孩子们对这个内容进行了预习,课堂上进行有效的交流,尤其重视方法的的归纳和应用,加深学生对这些知识的理解,从而提高学生对这些数学思想方法的掌握水平,把培养学生解决问题的能力这个目标落到实处。如找规律这个内容,6个点可以连成多少条线段?8个点呢?点少的时候,咱们可以动手连一连来数出线段数,但关键还是要从连线的过程中发现连线时的规律。书中的算式是1+2+3+4+5=15(条),而有一个学生是这样列的:5+4+3+2+1=15(条),他有自己的理解:6个点,开始可以从其中一个点出发与另外5个点相连,连5条线段,换个点与其它点相连,只能连4条,依此类推。相当OK的想法,规律也很快就找到了,化难为易成功了!

《数学思考》教学反思10

  因为视导,又因为新课上完好几天,所以没有新课来迎接视导,所以选择了代数式这章的复习课来公开课,其实,很少这么系统的一个一个知识点进行复习了,每次都是直接联系,这次因为这一章知识点比较繁多,特别是代数式,整式,单项式,多项式,次数,系数一系列的知识,当时上课的时候学生都很多乱了,烦了,这次章复习就好好的学习了下,我采取的方式是,学生不看书,回忆下这一章我们都学到多少知识点,学生通过自己举例子,回忆概念,定理,法则,对本章的知识点有了一定的了解,然后做题目,我尽管这一章也学完了几天,但是难得题目基本没有,主要还是选择练习基本知识进行的,所以这次公开课我选择了几个典型的题目,例如求代数的值得时候,我们有直接给未知数的数值,而是告诉这样的式子X+7的绝对值+Y+3的平方等于零,这样的题目,还有X的平方+X+7=10,求2X的平方+2X等于多少,因为平时基本没有练习,所以这样的题目让学生直接做出现了问题,我上完,觉得应该先出一个,老师讲解,或者和学生一起探讨,然后在来个变式让学生做,这样会好很多。

  小结与思考的课还是不好上的,以后多探索。

  最近总觉得自己遇到了屏障,不知道怎么上课了,寻求突破。

《数学思考》教学反思11

  【题目】

  【境头回放一】

  生1:我还有一种方法。

  师:你能介绍一下吗?

  生1:我是比没投中的个数。李晓明和赵强都是3个没投进,而陈冬冬只有2个没进,所以陈冬冬投得最准!

  师:他说得有道理吗?

  生2:我认为他的说法有道理!

  生3:我也认为是对的。

  师:行!看来这种方法很受你们欢迎!现在老师也来参加比赛,假设投了2个,投中了1个。张老师只有1个没进,该是第一吧!

  (停了片刻,“错了!错了!”学生不约而同地喊了起来。)

  师:什么地方错了?

  生4:不能比没进的个数!虽说张老师只有1个没进,但张老师投中的个数只占总个数,比、、小,所以张老师不能算第一。

  【反思一】道理是悟出来的

  “我是比没进的个数……”无疑,学生的想法是错误的,但对此的认识仅局限于我与极少数的优生。如何让每一位学生都明白这一道理,悟出这一方法的错误?如果我只是简单地判定这一想法的错误,学生的思维必定还是被这一假象迷惑,同样走不出思维的困境。在此瞬间,我选择了举例——我也参加这次比赛。面对我的“两投一中”,许多学生才终于恍然大悟,明白了比没进的个数只是一种偶然或是巧合。就这样,学生一片混沌的思维在瞬间得以清晰,在徘徊与犹豫中得以坚定。道理是悟出来的,简单的告之,学生也许会知道,但缺乏必要地体验与理解的成份,这样的知道必定是肤浅的。

  【境头回放二】

  师:张老师好不容易得个第一,被你们这样轻而易举地否定了。但张老师还是很服气的,因为你们说得在理。同学们,其实施俊杰的想法也是有道理的,只是缺少一个前提?

  生5:我知道了。如果投的总个数是一样的话,就可以直接比没进的个数。

  师:你的思维真敏捷!其他学生也明白吗?(师留给学生“消化”的时间)

  师:在总个数一样的情况下,没投中的个数越少,成绩越好。那比投中的个数可以吗?

  生6:也可以!

  师:同学们,根据这样的一种思路,我们也可以知道谁投得准一些。我们应感谢谁?

  生齐说:施俊杰。

  师:是啊!虽说他的想法存在问题,但我们只要稍加改进,就成了一种好方法!因此,学习就要像施俊杰那样积极思考,并敢于提出自己的观点与想法,这样即使观点不成熟,也会给我们以启发,拓宽了我们的解题思路。

  【反思二】错误成就精彩

  “我是比没进的个数”其实这一想法是有一定的道理的,只是缺乏一个前提。如何“变废为宝”?以释放这一想法的内涵价值,并呵护学生敢于提问的勇气与勤于思考的习惯。“同学们,其实施俊杰的想法也是有道理的,只是缺少一个前提?”在这一问题的指引下,学生很轻松的得出了:在投的总个数一样多时,没进的个数越少,投得越准!

  学习难免会有错误,关键是教师能透过错误探寻出它内蕴的价值,并藉此进行合理地处置与有效地引导,以充分激活学生的思维,让他们主动参与对“错误”再认识。“错误有时前进一步就是真理。”面对课堂生成的“错误”,我们要学会珍视它,让它成为学生思维的平台与跳板,这样错误就会成就课堂的精彩!

《数学思考》教学反思12

  算法多样化是不是就等同于一题多解,是不是算法越多越好呢?这是值得所有的小学数学老师思考的一个问题。作为教师,我们不应忽视学生的认知基础和思维水平,一味地强调算法多样化。我们教师在实施算法多样化的过程中,必须解决好两个问题:

  1、要正确理解算法多样化的实质。

  算法多样化是数学课程改革倡导的一种新的教学理念,是教师鼓励学生独立思考,用自己的方法解决问题,培养学生的创新思维,促进学生个性发展的体现。它是针对计算过程中,不同的学生会从各自的生活经验和思考角度出发,产生不同的思考方法而提出的一种教学策略,也是尊重学生个性化学习、促进学生个性化发展的有效途径,其实质是尊重学生对计算方法的自主选择。让他们在计算中感受计算方法和解决问题策略的多样性。为此,教学中教师不能为了算法的多样化,而将算法形式化、教条化。

  不少算法是在教师“还有不同的方法吗”的不停追问、暗示下“逼”出来的。像有的学生为了“配合”教师,把实际计算中自己不用的算法“上报交差”;有的学生则为了“与众不同”,人为地拼凑算法;有的算法实际上是与别人雷同的……可以说,这些算法并不反映学生真实的思维状态,也没有多大的实际价值。由此可见,教师如果片面地追求算法的数量,以为算法越多越好,而忽视算法的质量,忽视算法背后所代表的学生真实的学习状态,很容易会把学生引入钻牛角尖和乱用算法的误区。这对学生的发展是非常不利的。

  2、处理好算法多样化和算法优化的关系。

  每个学生的生活经验和思维发展水平不同,对相同的教学内容往往表现出个性化的认识和理解,所使用的计算方法必然多样性,因此在解决数学问题的过程中就会形成多种方法。在这些方法中,有些算法比较简便,有些算法比较麻烦;有些算法思维水平较低,有些算法层次较高,这就会产生算法优化的问题。算法优化的过程应是学生不断体验和感悟的过程,而不是教师强制规定和主观臆断的过程,教师要让学生自己逐步找到适合自己的最优算法。例如,解决“18+7”这样的计算问题时,学生提出各种算法后,教师不要急于评价,也不要用一种算法去统一,更不能算法“自由化”,即想怎样算就怎样算。可以对学生提出的各种算法进行比较、分析,让学生在与同伴的交流比较中了解各种算法特点,找到适合自己的一种或者几种算法,以此正确地理解算法多样化和算法优化的关系。

  至于教材中编排的某些算法,如果在教学时没有学生提出,教师应从学生的认知实际出发,区别对待。其一,若已经是学生不用的“低思维层次的算法”,教师可以不再出示,以免学生走回头路。其二,若是算法经教师“千呼万唤”仍不“出来”,说明算法离学生“最近发展区”很远,大可不必呈现。其三,若是有利于学生今后进一步学习和发展的算法,教师可通过提示等方式引导学生进行探索,也可通过向学生推荐等形式进行呈现。当然,我们也要注意避免把算法刻意“灌输”给学生。

《数学思考》教学反思13

  在小学数学教学过程中,教师精心设计好问题是有效地组织好课堂提问的前提。要使提问收到较好的效果,还必须讲究提问的技巧。

  一、掌握问的方法。在小学数学课堂教学掌握问的方法有以下几方面:

  a:创设悬念。教师提问时,要使学生对问题产生“欲知后事如何”的好奇心,带着一种心理上的期待去学习。例如,在讲解《比例尺》时,可以先让学生思考:拿一张地图,量一量建德到杭州的图上距离有多长?学生量出后,教师进一步追问,建德到杭州的距离是否就是你所量的这样长呢?此刻,学生有一种“追下去”的悬念心理,从而跳动了学生探究新知的兴趣和欲望。

  b:相机诱导。抓住时机,采取循循善诱、点拨启迪的方法提出问题,使学生在教师的诱导下,独立解决问题。特别是当学生的思维活动出现停滞、阻塞时,教师要善于提出问题来诱导学生调整思路。使思维活动能顺利开展。c:变换角度。在学生能够接受的前提下,要从不同角度提问,做到深文浅问,浅问深究,引导学生多方面去思考问题,从中选择解决问题的最佳方法。

  二、把握问的时机。

  课堂提问的效果直接与提问的时机有关。在一节课的不同阶段,学生思维的紧张程度是不同的,教师要善于抓住时机采用不同方式提问。例如,在课的开始,学生的思维由平静趋向活泼状态,这是可采用激发式提问,多提一些回忆的问题,有助于培养学生学习的积极性。当学生思维处于高度活跃状态时,可采用探究式提问,有助于学生全面、深入理解教学内容,促进学生思维的深刻性和创造性。

  三、重视答问评价,鼓励学生质疑。

  对学生的答问进行评价,有利于促进师生交流,形成良好的双响反馈,创设生动活泼的课堂气氛。学生回答后急切想知道对错,其余学生的心理状态也一样。因此,教师要及时准确地对答问进行评价。同时在评价中,鼓励学生提出疑难问题,师生共同帮助解决。

《数学思考》教学反思14

  教学片断:

  师:生活中你看到过像这样的射线吗?

  生1:手电筒射出的光是射线。

  生2:汽车车灯射出的光是射线。

  生3:太阳射出的光是射线。

  对学生所举例子暂不评价。师取出事先准备的激光电筒,将激光射向墙面,问:这是射线吗?

  教室顿时安静了,但转眼,不少小手又举起来了。

  生1:不是。(师:为什么?)因为它有两个端点。

  生2:射到外面就是射线了。(师将激光射向窗外)

  生3:射到我们学校前面的那幢楼,墙上还有一个点,那不是线段吗?

  生1:(很着急)我到操场上,往天上照,这就是射线。

  生4:如果激光可以穿透一切,就是射线。

  师:大家说得都有道理。让我们想象一下,假如手电筒的光可以向一个方向无限延伸,就可以把它看作一条射线。

  反思:

  我认为,生活化师教学理念而不是目标。生成生活化材料的目的并非是要让学生找到生活中有那些东西可以看作射线。生活中本没有射线,射线是数学抽象的结果,引导学生举例就是要让他们同样经历现实世界的数学抽象过程。而正是在这一过程中,学生得以进一步认识射线的特点,感悟到了什么是“无限”,在这一过程中,学生的空间观念也得到了发展。我想这才是数学生活化的本意。<