《圆柱的表面积》教学反思范文(精选五篇)

莉落老师

  《圆柱的表面积》教学反思1

  1、直观演示和实际操作相结合。

  新课开始,教师通过圆住教具直观演示,引导学生复习圆柱的特征,进而理解圆柱表面积的意义。在教学侧面积的计算时,精心设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?想一想,能否将这个曲面转化为我们学过的平面图形,从中思考和和发现它的侧面积该怎样计算呢?在老师的启发下,学生以小组为单位,用圆住形纸筒进行实际操作,最的探究出侧面积的计算进行实际操作,最后探究出侧面积的计算方法。

  2、培养了学生的合作创新意识。

  在教学圆住侧面积计算方法时,教师设有拘泥于教材上把侧面积转化为长方形这一思路,而是放手让学生合作探究;能否将这个曲布置民化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开。结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等两面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的创意识。

  《圆柱的表面积》教学反思2

  圆柱的表面积教学,关键在于通过圆柱的侧面展开图推导出圆柱的侧面积公式。因此本节课的教学,从始至终贯穿着以学生为主体,教师为主导,训练思维为主线的原则,在各个环节中让学生自己去解决,让学生在动手操作、合作探究中学习。

  一、把握重点,突破难点,合理利用教材。

  圆柱表面积这节课教学内容主要包括:圆柱的侧面积、表面积的计算,以及用进一法取近似值。教材安排了三道例题,但在教学中,我将侧面积计算方法的推导作为教学难点来突破,将表面积的计算作为重点来教学,将用近一法取似值作为一个知识点。再结合学生的实际,巧妙的把他们联系成一个整体,做到收中有放,放中有收。

  二、直观演示和实践操作相结合。

  在侧面积和表面积的计算环节中,我首先让学生看一看、摸一摸,自己观察、发现,形成圆柱表面积的表象。认识到圆柱的表面积等于圆柱的侧面积和两个底面面积之和。然后,在突破侧面积的计算方法这个难点时,让学生自己展开圆柱体模型,观察到侧面展开是一个长方形。长方形的长就是圆柱的底面周长,长方形的宽就是圆柱的高,从而根据长方形的面积公式自然推导出了圆柱侧面积的计算公式,然后我又启发学生:圆柱的侧面展开图除了长方形,还可能是什么图形?发现、创新是每个孩子的天性,在基本知识理解掌握之后,他们对于书本上没有的方式方法有更高的兴奋点与关注点。这时有的学生会说,沿高展开后还可能得到正方形,这是一种特殊现象。借此我又让学生自己进行操作、尝试,得出了与书上不一样的结果。这样做,不仅启发了他们的思维,又培养了他们的创新意识。

  三、习题设计。

  在练习题的设计中,遵循了从易到难的原则,在形式、难度、灵活性上都有体现。判断题有利于学生对知识的理解;动手测量并计算圆柱体实物表面积的题目,锻炼了学生对知识的实际应用能力,使学生感受到数学与现实生活的联系。

  当然,在这节课的教学中,还存在着一些不足。如:学生对圆周长和面积的计算不够熟练;小组合作的初衷也是好的,但在实际教学中却没有达到预期的要求。在以后的教学中,我还应该多吸取教训,弥补自己的不足,用更好的教学方法进行数学知识的教学。

  《圆柱的表面积》教学反思3

  一节课讲得再好,关键是学生学到了什么。

  今天我在讲圆柱的表面积时,先是让学生想像圆柱是由哪些部分构成的,通过对圆柱结构的了解,让学生明白在计算圆柱表面积时,我们一定要看清题目所提供的信息,如果是一个实物图,这个还好些,我们只要根据题目所提供的实物图进行解答。如果题目所提供的信息是一个生活中的实物,我们在解决时就要结合实物实际情况进行解析。如油桶的制作它就是要算圆柱的侧面积与两个底的面积。再如水桶的制作,就不再是在侧面积的基础上加上两个底面积,而是只要加上一个底面积即可。如给一个大厅里的圆柱子刷涂料,这是要算的面积则是这个圆柱的侧面积。

  所以在讲解时,我放手让学生从生活中找不同的圆柱体,从而让学生了解生活,了解数学。本节课还有一个重点,那就是让学生明白圆柱体展开后,它的侧面是一个长方形或一个正方形,一般而言,展开的长方形的长是与圆柱底面的周长是相等的,否则这个水桶就会漏水。这个知识点是本节课的重点,同时也是学生以后作业中常出错的“闪光点”。所以本节课在教学过程中,我有意让学生通过圆柱体进行实际操作,让学生从内心深处明白,圆柱底面周长就是展开后长方形的'长。

  虽然今天学生作业只是套用公式,学生没有什么失误,但在拓展题,还是暴露出灵性不足。希望在以后练习中还需进一步强化,从而达到熟能生巧的地步。

  《圆柱的表面积》教学反思4

  根据学校安排,上了《圆柱的表面积》这节课。虽然比较顺利的完成了课堂教学,基本能达成教学目标任务,学生的学习效果也不错。但细细想来,也有不少需要改进的地方。

  1、课件的制作还需要修改。在巩固练习侧面积的计算中的第一题,圆柱的底面周长是18厘米,高是10厘米,求侧面积是没问题,但到了接下来的求表面积时,18除以3.14、再除以2,就得不到整数,给学生的计算带来麻烦,是自己备课不精细,考虑不全面造成的,需要修改,改成18.84厘米。

  2、在讲完例四后,安排的练习中,本来设计一组三个练习题,一个像例四,要求表面积但只需求一个底面与侧面积之和;一个是求表面积,但是需要侧面积与两个底面积之和;另一个是求烟囱的面积——即只需求侧面积。是让学生明白,解决实际问题时,虽说要求圆柱的表面积,但要根据具体情况具体分析,不能死套公式。

  3、课堂总结时,应放给学生自己总结本节的的学习收获,不要老师代劳。

  下一次上课,尽量注意以上几个问题,争取更好一点。

  《圆柱的表面积》教学反思5

  在教学圆柱的表面积时,由于学生已经学习了长方体和正方体的表面积,而且上节课已经制作过圆柱模型,所以学生对表面积含义的理解并不困难。因此在教学圆柱的表面积时,我让学生通过讨论交流并观察圆柱展开图,很快就理解了圆柱的表面积是由一个曲面和两个完全相同的圆围成的。但在计算表面积时,侧面积的计算方法是本课中的教学难点。

  学生往往不能将圆柱的底面半径及圆柱的高,和圆柱侧面的长宽建立起联系,因此在教学时我加强了学生的操作活动,让学生预先在展开后的图形中标明圆柱的底面和侧面,以便把展开后的每个面与展开前的位置对应起来但在计算时却出现周长与面积混淆,所以我及时帮助学生理清解题思路,让学生明确计算侧面积的直接条件是底面周长和高;圆柱的底面是圆形,计算圆的面积的直接条件是半径。而且要能熟练区分圆的周长和面积的计算公式。尽管如此学生在解决实际问题时还是问题很多,因为步骤较多,计算粗心不规范也影响了解题速度和准确率,所以一节课下来,课堂容量不大,效率较低,看来在这个单元的教学中要结合学生实际再改进教学方法,提高课堂教学效率。