一次函数教学反思

孙小飞老师

一次函数教学反思1

  在指导教师陆春蕾老师的指导下,经过我们的多次沟通,我进行了多次修改,我上了的研究课《14.2.2一次函数(2)》,内容是一次函数的图象和性质。反思这节课,自己评价为很烂的一节课。

  1、不足之处:

  (1)课前对学生备的不充分,不了解学生对函数图象的画法和正比例函数的图象与性质掌握的程度如何,导致本节课不能按照预期的设想顺利进行。本节课一开始我设计了通过两个具体的正比例函数对正比例函数图象和性质进行了复习,大部分学生对正比例函数的性质掌握的还比较好,第二个活动是通过学生画函数y=x,y=x+2,y=x-2的图象,探究正比例函数和一次函数图象之间的关系,但是由于不了解学生画函数图象掌握的怎么样,高估了学生的能力,看到学生连列表都不知道什么意思,大部分学生不会画函数图象,在这个活动里耽误了很多的时间,我也就有些紧张,有些着急,直接影响了后面的教学活动。

  (2)心理素质差,随机应变的能力比较差。由于学生画图象的表现对我的影响,一时的紧张让我对后面的教学有些混乱,思路不清晰,所以后面的教学中有些语无伦次,事先备好的环节不连贯,联系不紧密。

  (3)由于活动二浪费了时间,所以后面的活动四探究一次函数y=kx+b(k≠0)中的k、b对函数图象有什么影响的时间就有些紧,探究的不充分,不够,学生思考的时间比较少,没有发挥学生的主体性,让学生真正动起来。

  (4)学生比较沉默,不爱说,课堂比较死板,不活跃,所以整节课我说的太多,学生说的动的少。

  2、提高的地方:

  通过本次备课、说课、上课的活动,我觉得自己也有所提高。

  (1)本次课通过与陆老师的交流,经过陆老师的指导,经过四次的备课修改,反复斟酌,最后成型的。最开始是按照陆老师的要求把一次函数的定义和一次函数的图象与性质合为一节课来讲,于是我就按照我的思路,我的站位备了课。第二次交流的时候,我们觉得这样内容太多,东西也太碎了,于是又统一意见,陆老师讲一次函数的定义,我们讲后一节一次函数的图象与性质。这样我又修改我的教学设计,备好之后给陆老师看,陆老师基于对学生、对教材的理解和站位又给我一些好的建议,我开始了第二次修改,也就是第三次备课。备好之后有拿给陆老师看,一同交流讨论,交换意见,又有所修改,周末回家我又对本节课进行斟酌,修改一些细节的东西,连同学案发给了陆老师,陆老师又认真的看了我的课件和学案,还为我重新设计了学案的排版,替我重新画了平面直角坐标系,使学案看上去更加美观。讲课的前一天我们又重新的沟通了意见,最后敲定。这个备课的过程虽然很复杂,修改数次,但在与陆老师交换意见的同时,使我对本节课的思路更加明确,站位更准,同时也深深的感受到陆老师对教材、对知识的理解,以及对数学思想和学法的渗透真真正正的是从学生的角度出发,以学生为本,这也是我今后应该努力的地方。

  (2)通过周一的说课,在吴老师的指导下,我学到了很多关于细节的知识,如:PPt上的格式,对齐方式问题;“1”后面应该是“.”,而不是“、”,PPt上用的字体只有两种:宋体或者黑体;学案应该如何设计更好,坐标系要画的特别标准,并且美观,为此,陆老师特意为我重新设计了学案。这些细节我以前真的都不知道,因为,从没有人和我说过这些问题,我也从没把这些当回事去请教谁,这对于我来说真的是一个很大的收获,非常感谢吴老师和陆老师的指导。

一次函数教学反思2

  本节课我将一次函数的知识分为概念、图象及其性质和应用三大部分,授课过程中体现在板书设计、知识回顾、例题讲解及练习巩固等环节,让学生对一次函数有一个系统、直观的复习思路。

  在复习知识点时,让学生自己联想回顾,变被动为主动学习。例如,在“图象及其性质”环节中,老师不急于提问,而是让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充。这样,使无味的复习课变得活跃一些,增强了学习气氛。

  本节课的教学方法主要有讲练结合,自主探究,小组讨论等,教学中让学生积极主动参与知识的形成过程,体验到新知识往往建立在旧知识的基础上,并且与一些旧知识还存在着紧密的联系,放手让学生运用转化的思想方法进行操作,使学生有效地理解和掌握一次函数的概念和应用,同时让他们获得了数学思想方法,并培养了学生探索问题的能力.

  本节课的教学设计主要渗透转化的数学思想方法、数形结合的思想方法以及函数与方程(组)思想方法,让学生体验利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力;体验函数图象信息的识别与应用过程,发展学生的形象思维能力;理解一次函数及其图象的有关性质;初步体会方程与函数的关系,建立良好的知识联系;能根据所给信息确定一次函数表达式;会作一次函数的图象,并利用它们解决简单的实际问题,在合作与交流活动中发展学生的合作意识和能力.

  在处理典型例题、练习中,发现绝大多数学生对于简单题型能自己解答,而一部分学生对综合性、开放性题目有些无从下手,透露出了思维不灵活,应变能力弱等不足。所以要想达到高效高质,必须要分层次教学,让不同水平的学生在同一节课中得到应有的发展,课前必须对每一个环节,每一个题型,每一个学生作充分地细致地研究。

  在教学过程中,我发现理论与实践在学生身上很难统一。学生习惯于做纯理论性的问题,而对于实践中蕴含的数学问题即便昌很简单,也发现、挖掘不出。这与枯求的“人人学有价值的数学”相差甚远,而且需要很长的时间来解决。

一次函数教学反思3

  结合一次函数的教学谈谈自己的几点肤浅感受、几处遗憾之点!

  “一次函数”这一章的重点是一次函数的概念、图象和性质,由于学生初次接触函数的有关内容,因此,教科书对一次函数的讨论比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握二次函数、反比例函数的学习方法。学习这一章后,我对新教材有了一些更深的认识。

  纵观整章内容,一次函数的实际问题比较多,备课时我头一直很痛:想不通学生刚刚接触函数为什么就有这么多实际问题呢?而且教材对一次函数的解析式与图象之间的关系讲解较少,例如k体现了图像的什么特征?除了增减性外还有没有别的体现,在实际问题中的实际意义是什么?b体现在什么方面等等。

  在实际的教学中的确遇到了以上困难,教学内容十分不好处理,课时又比较少,我还是附加了很多内容进去,否则有些题目真的不会做!说是素质教育,但学生还是要考试的呀。

  下面我就把平时遇到的困难大体呈现一下:

  1.“一次函数的性质”中无b对函数的图象的影响,但题中有,要补讲:

  一次函数y=kx+b有下列性质:

  (1)当k>0时,y随x的增大而______,这时函数的图象从左到右_____;

  (2)当k<0时,y随x的增大而______,这时函数的图象从左到右_____.

  (3)当b>0时,这时函数的图象与y轴的交点在:

  (4)当b>0时,这时函数的图象与y轴的交点在:

  要让学生学会化一次函数的草图,不但平时分析题目有好处,对中考中的许多问题都有用。例如(1)y=2x+3不过第象限;(2)函数y=kx中y随x的增大而减小,那么y=kx+k不过第象限等等。

  2.图像的平移问题:

  (1)将直线y=3x向下平移2个单位,得到直线_____________________;

  (2)将直线y=-x-5向上平移5个单位,得到直线_____________________.

  现在学生就只能通过草图来研究,很浪费时间。实际上在后面我们会学到图象平移的规律,与多位教师讨论后,我们用草图再结合b的意义来解决,让学生多一点感性认识,少一点理论上的结论,这正是新课程对学生自主动手推导能力培养的一种体现!

  3.实际问题中k的意义:

  这个要根据具体的行程问题,销售问题等总结出来:k在时间、路程的图像中指速度,速度越大图像越陡,速度越小图像越缓。在销售件数、销售金额图像中指单价,单价越贵直线越陡,单价越便宜直线越缓。这对中考中的最后一题选择题是很有好处的,具体列举几个实例:

  (1)为鼓励居民节约用水,某区将出台新的居民用水收费标准:1若每月每户居民用水不超过4立方米,则按每立方米2元计算;2若每月每户居民用水量超过4立方米则超过部分按每立方米4.5元计算。现假设该市某户居民某月用水x立方米,水费为y元,则y关于x的函数图像表示正确的是()

一次函数教学反思4

  教学过程中教师应通过情境创设激发学生的学习兴趣,对函数与图像的对应关系应让学生动手去实践,去发现,对一次函数的图象是一条直线应让学生自己得出。在得出结论之后,让学生能运用 “ 两点确定一条直线 ” ,很快做出一次函数的图像。在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力。

  根据学生状况,教学设计也应做出相应的调整 . 如第一环节:探究新知,固然可以激发学生兴趣,但也可能容易让学生关注代数表达式的寻求,甚至部分学生形成一定的认知障碍,因此该环节也可以直接开门见山,直切主题,如提出问题:一次函数的代数形式是 y=kx+b ,那么,一个一次函数对应的图形具有什么特征呢?今天我们就研究一次函数对应的图形特征 — 本节课是学生首次接触利用数形结合的思想研究一次函数图象和性质,对他们而言观察对象、探索思路、研究方法都是陌生的,因而在教学过程中我通过问题情境的创设,激发学生的学习兴趣,引导学生观察一次函数的图像,探讨一次函数的简单性质,逐步加深学生对一次函数及性质的认识。本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确定需要两个条件,能由条件求出一些简单的一次函数表达式,并能解决有关现实问题。本节课设计注重发展了学生的数形结合的思想方法及综合分析解决问题的能力及应用意识的培养,为后继学习打下基础。

  由于这节课的知识容量较大,而且内容较难,我们所用的学案就能很好地帮助学生消化理解该知识,。在教学过程中,让学生亲自动手、动脑画图的方式,通过教师的引导,学生的交流、归纳等环节较成功地完成了教学目标,收到了较好的效果。但还存在着不尽人意的地方,由于课的内容容量较大,对于有些知识点,如 “ 随着 x 值的增大, y 的值分别如何化? ” ,本应给学生更多的时间练习、讨论,以帮助理解消化该知识,但由于时间紧,学生的这一活动开展的不充分。课堂气氛不够活跃,个别学生的主动性、积极性没有充分调动起来。这是今后教学中应该注意的问题。

一次函数教学反思5

  一堂好的数学课常常是由好的数学问题启发并激励学生学习的充实过程。因此,我把教学设计的主体“解决问题,总结性质”设计成由若干个有一定逻辑顺序的问题,并由这些问题组织师生的教学活动。那么,怎样设计好的问题呢?我认为,在完成教学任务并实现教学目的的“作用点”上,在知识形成过程的“关键点”上,在运用数学思想方法产生解决问题策略的“关节点”上,在数学知识之间联系的“联结点”上,在数学问题变式的“发散点”上,在学生思维的“最近发展区”内,提出恰当的、对学生数学思维有适度启发的问题就是好问题,这也是问题设计的基本原则。例如:本课在一开始就创设问题情境,引导学生思考,引入课题。给出几个一次函数的图像,让同学们合作学习进行探索一次函数的性质。又如,画一次函数图象只需描出图象上的“任意两点”的结论后,提问学生“你取的是哪两点”,找了四个同学回答出各自的两个点,既让学生知道如何去找图象上的两个点,也使学生理解了刚刚得出的结论。

  适当地提出好问题,不仅可以引导学生的思考和探索活动,使他们经历观察实验、猜测发现、推理论证、交流反思等理性思维的基本过程,而且还给了学生提问的示范,使他们领悟发现和提出问题的艺术,引导他们更加主动、有兴趣地学,富有探索地学,逐步培养学生的问题意识,孕育创新精神。而“兴趣是最好的老师”,有良好的兴趣就有良好的学习动机,但不是每个学生都具有良好的学习数学的兴趣。“好奇”是学生的天性,他们对新颖的事物、知道而没有见过的事物都感兴趣,要激发学生的学习数学的积极性,就必须满足他们这些需求。

  探索一次函数的性质时,给出几个关联问题,

  问题1:既然一次函数 y=kx+b(k不为零)的图象是一条直线,()那么作图时,至少要取几个点就可以了?取哪一些点比较简单,有代表性?

  问题2:在前面的直角坐标系中作一次函数 y=2x-1,y=2x,y=-1/2x的图象,并观察四条直线的位置关系。

  问题3:正比例函数 y=kx (k不为零)是一次函数吗?作图时需要几个点?每一个正比例函数一定能通过哪一个点?

  设置的问题由浅入深,使得学生能进行理性的思考,并提升他们思维的深度。

  学生是学习的主人。新课标强调,让学生在自主探索与合作交流中学会学习,提高数学素养。本节课充分体现了这一理念,学生有足够的自主探索时间,有与同学合作互动的空间,有与老师交流表达的机会。学生不是从老师那里获取知识,而是在数学活动的过程中发现规律、体验成功。

  教师是课堂的主导。教师是学生数学学习的组织者、引导者和合作者。然而,组织、引导本身就强调了教师必须是一个特殊的“合作者”,而不是撒手不管的“非主导者”。教师的主导作用不是体现在“主宰”课堂,而应体现在为学生提供鲜活的学习素材,体现在对学习团体的严密组织,体现在对交流活动的精心策划,体现在处理反馈信息的及时有效。这不仅需要教师透彻领会教材实质,更需要教师准确把握学生个性。试想本节课,如果教师不是真正了解学生,就不能组成协调高效的学习小组,也不能在有限的时间内完成教学任务。

一次函数教学反思6

  本节课将一次函数的知识分为概念、图象及其性质和应用三大部分,授课过程中体现在板书设计、知识回顾、例题讲解及练习巩固等环节,让学生对一次函数有一个系统、直观的复习思路。在复习知识点时,让学生自己联想回顾,变被动为主动学习。例如,在“图象及其性质”环节中,老师不急于提问,而是让学生自己说出一次函数图象的形状、位置及增减性,不完整的可让其他学生补充。这样,使无味的复习课变得活跃一些,增强了学习气氛。

  在处理典型例题A练习中,发现绝大多数学生对于简单题型能自己解答,而一部分学生对综合性、开放性题目有些无从下手,透露出了思维不灵活,应变能力弱等不足。所以要想达到高效高质,必须要分层次教学,让不同水平的学生在同一节课中得到应有的发展,课前必须对每一个环节,每一个题型,每一个学生作充分地细致地研究。

  在教学过程中,我发现理论与实践在学生身上很难统一。学生习惯于做纯理论性的问题,而对于实践中蕴含的数学问题即便很简单,也发现、挖掘不出。

一次函数教学反思7

  一、教学目标:

  1、知道一次函数与正比例函数的定义.

  2、理解掌握一次函数的图象的特征和相关的性质;

  3、弄清一次函数与正比例函数的区别与联系.

  4、掌握直线的平移法则简单应用.

  5、能应用本章的基础知识熟练地解决数学问题。

  二、教学重、难点:

  重点:初步构建比较系统的函数知识体系。

  难点:对直线的平移法则的理解,体会数形结合思想。

  三、教学过程:

  1、一次函数与正比例函数的定义:

  一次函数:一般地,若y=kx+b(其中k,b为常数且k≠0),那么y是一次函数

  正比例函数:对于 y=kx+b,当b=0, k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。

  2. 一次函数与正比例函数的区别与联系:

  (1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。

  (2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx

  平行的一条直线。

  基础训练:

  1. 写出一个图象经过点(1,- 3)的函数解析式为: 。

  2.直线y = - 2X - 2 不经过第 象限,y随x的增大而。

  3.如果P(2,k)在直线y=2x+2上,那么点P到x轴的距离是:。

  4.已知正比例函数 y =(3k-1)x,,若y随

  x的增大而增大,则k是: 。

  5、过点(0,2)且与直线y=3x平行的直线是: 。

  6、若正比例函数y =(1-2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1<x2时,y1>y2,则m的取值范围是: 。

  7、若y-2与x-2成正比例,当x=-2时,y=4,则x= 时,y = -4。

  8、直线y=- 5x+b与直线y=x-3都交y轴上同一点,则b的值为 。

  9、已知圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。(1)求线段AB的长。(2)求直线AC的解析式。

  四、教学反思:

  教师认真备课,查阅资料,搜集有针对性的训练题,学生只要课堂上能按照教师的思路去做就很高效了。课堂训练以竞赛的形式进行,似乎有一定的刺激性,但缺少后续的刺激活动,学生没有保持住持久的紧张状态。

  课前先把所有的复习任务都交给学生完成,教师指导学生浏览教材、查阅资料归纳本章的基本概念、基本性质、基本方法,并收集与每个知识点相关的有针对性的问题,也可以自己编题,同时要把每一个问

  题的答案做出来,尽量要一题多解。再由小组长组织小组成员汇编,在汇编过程中要去粗取精。课堂就是以小组为单位学生展示自己的舞台,在这个舞台上学生是主角,在这个舞台上学生可以成果共享,在这个舞台上学生收获着自己的收获。台上他们是主角,台下他们也是主角。

  从另一个角度体会到了减轻学生负担的深刻含义,不单指减少学生课后学习的时间,更重要的是提高学生学习的质量、效率,我的这节课失败之处就是过分的注重了前者,而忽略了实效性。那么在今后的复习课教学中我要多思多想、多问多听(问问老师、听听学生的想法),力求在真正减轻学生负担的基础上打造高效课堂。

一次函数教学反思8

  从整体上反思在这节课中我总体完成了知识目标,但是过程目标与情感态度价值观目标在课堂中体现的不过好,完成了重点但没有更好的突破难点,整体的课堂环节较为完整。

  首先将课堂实施做以反思:在创设情境,这块在课堂实施过程中做得还算可以,基本上达到预设效果,但在揭示课题时语言组合的还不够完美。在呈现定义,促进一次函数确定关系式的形成过急、过快,没有进行重点反复强调。学生在得出待定系数确定一次函数的关系式不太熟悉和确定,没能深一步的促进理解。还有没有及时归纳数学思想。

  其次说说教学设计中存在的问题

  1.实际问题的背景有点远,如果能是我们身边的实际情景,我想效果更佳,

  2.在新旧联系,正反对照中习题设计的太单一,题量有点少。

  第三,教师在课堂中的表现

  1.整个课堂中紧张,所以也有点影响学生的正常发挥,紧张的原因我还是认为自己准备的还是不够充分,底气不足。

  2.课堂中语音不够简练、生动,缺乏数学严谨性,缺乏生活化的语音。语言较干瘪,重复较多。在幻灯片切换时候衔接语不好,过于生硬。

  自己想想试着从以下几点做点改进:

  一、加强同学生的沟通,课前要检查预习,布置任务要有针对性。课上多注意学困生的表现。

  二、加强备课的精细度,深度。备学生在备课中的比重。认真思考和分析学生的接受情况,实时掌控学生学习状态。精心选择适合学生和教学内容的表现方法来呈现。

  三、多和同事交流、沟通。多向他们取取经,多在一起探讨教学。取长补短,让自己尽快的成长和成熟起来。

一次函数教学反思9

  本节课的教学设计反思是围绕着今天“六个有效”的主题活动展开反思的。

  一、有效的“复习回顾”

  学生已初步掌握了函数的概念、一次函数的图象及性质,并了解了函数的三种表达方式:图象法、列表法、解析式法。在此基础上通过知识提问引导学生进一步掌握一次函数的相关知识并能灵活的应用到习题中,有效的“复习回顾”在本节课起到了承上启下的作用。

  二、有效的“新知探究”

  根据实际的问题情境感受生活中的一次函数,利用已知的条件,来确定一次函数中正比例函数表达式 ,并理解确定正比例函数表达式的方法和条件。

  三、有效的“拓展延伸”

  设置这个例题是物理学中的一个弹簧现象,目的在于让学生从不同的情景中获取信息来求一次函数表达式,一次函数表达式的确定需要两个条件,能由条件利用“待定系数”法求出一些简单的一次函数表达式,并能解决有关现实问题.并进一步体会函数表达式是刻画现实世界的一个很好的数学模型,而且体现了数学这门学科的基础性。

  四、有效的“感悟收获”

  通过对求一次函数表达式方法的归纳和提升,加强学生对求一次函数表达式方法和步骤的`理解,通过“感悟收获”解决本节课的重点和难点。

  五、有效的“巩固提高”

  通过分小组“比一比、练一练”的活动形式,不仅激发了学生学习数学知识的兴趣,而且能将本节课的知识灵活的应用到习题中,提高了学生的解题能力和思维能力。

  六、有效的“作业布置”

  根据本班学生及教学情况在教学课堂后为了进一步巩固课堂知识,布置一定量的作业,难度不应过大,有效的作业更能拓展学生的思维,并体会解决问题的多样性。

  以上是本人对“六个有效”课堂的体会,有理解不到之处,请各位领导,老师指正批评,谢谢大家

一次函数教学反思10

  一次函数图像,是北师大八年级上册的内容。教学这一节时,我没有按照课本的讲解。我着这样安排的,先讲正比例函数的图像和性质,用一课时,今天我就是讲这一节。

  先介绍函数的图像、画法。再画正比例函数的图像,引出正比例函数是经过原点的直线。接着介绍怎样作正比例函数的图像。用这种方法,作几个正比例函数的图像,总结规律。接着练习。

  练习之后我备课时又有一个性质要介绍,由于时间的关系,没有讲解,就下课了!

  反思:1、课堂中前段时间留给学生的时间长,没完成课前准备的教学任务。

  2、本节课讲到第三个性质。

  3、练习题要精而且少,难易适中。

  4、注意课前准备,上课注意语言。函数教学反思反比例函数教学反思

一次函数教学反思11

  为达成课堂教学目标,我首先设定两个问题情境,让学生感知函数与方程、不等式的密切联系,再引导学生从以下两个方面分别讨论:一次函数与一元一次方程、一次函数与不等式。讨论时,结合函数图象从“数”和“形”的角度,进一步体会“以形表数,以数释形”的数形结合思想。现就我本节课教学情况反思如下:

  教学优点:

  1.能积极学习并采用多媒体课件进行授课。应用多媒体课件直观、明了的展示了一次函数与一元一次方程、一元一次不等式的联系,且课堂容量大、课堂效率高。运用幻灯片让枯燥的理论知识直观、形象、生动起来,激发了学生学习的积极性。

  2.能紧紧抓住教学重难点进行精讲精练。本节课重难点是让学生掌握一次函数与一元一次方程、一元一次不等式的联系,会用函数的观点解释方程和不等式及其解或解集的意义,掌握用图象求解方程、不等式的方法。教学时,每讲一个知识点,我都会及时给予训练题进行巩固,让学生理解理论知识的应用价值,从而把难点知识逐一击破,也让学生一点一点的感悟到用函数模型解决问题的可操作性和简便性。

  3.“数形结合”思想的完美体现。我能够从“数”的方面来解释方程的解及不等式的解集,反过来,又利用一次函数图象从“形”方面直观地表示方程和不等式的解或解集的含义。实质就是图象上对应点的自变量的取值或取值范围。这节课让学生充分感受到“数形结合”思想的重要性。

  4.课堂练习设置恰当。练习量适中,能达到及时训练巩固的目的;练习题的难度有梯度,层层递进;题型新颖,有选择、填空、回答、解答题型,让学生从不同角度理解知识,提高理论知识的认识水平;难度把握较好,情境1、情境2属于铺垫性练习,探究题属于讨论性题型,练习题属于巩固性题型,最后的热气球问题属于拔高性题型。

  教学不足:

  1. 课堂容量有些大,学生组内讨论时间较少。

  2. 对学生语言表达能力估计过高,用函数观点解释方程、不等式,学生只可意会,不会言语表达。

一次函数教学反思12

  学生已经学习过一次函数的图像和性质,在本节课开始之前,用一个具体的一次函数表达式带领学生回顾已学知识。

  根据函数表达式,我们可以得到函数图像与坐标轴的交点坐标,可以知道函数图像是上升还是下降,可以很快的利用k值确定y随x的变化而怎样变化。这时,抛给学生一个问题:在函数表达式未知的情况下,能不能用已知的函数图像上的点坐标或其他信息确定出这个函数的表达式?

  由此引入,给出今天所要学习的一个新方法—待定系数法,让学生阅读课本材料,和学生一起总结利用待定系数法确定一次函数表达式的步骤,简单概括为:设(一次函数或正比例函数表达式)列(方程组或方程)解(方程组或方程)答(写出函数表达式)。给出一个点坐标,可以确定正比例函数的表达式,让学生思考并分析总结确定一次函数表达式需要两个点,而确定正比例函数表达式只需要一个点。

  之后的主要内容是练习,采用让学生上台板演,请其他学生指正错误的方法,教师要强调解题过程的规范性。之后继续练习课本习题,并总结题目类型——有直接给出点坐标的,有根据图像确定点坐标的,有根据实际问题提取有用信息的等不同的给点类型,告诉学生如何从不同的题目中得到有用的条件,然后利用待定系数法求解函数表达式。

一次函数教学反思13

  教材分析

  1、 本节课首先从最简单的正比例函数入手.从正比例函数的定义、函数关系式、引入次函数的概念。

  2、 八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习初、高中其它函数和高中解析几何中的直线方程的基础。

  学情分析

  1、虽然这是一节全新的数学概念课,学生没有接触过。但是,孩子们已经具备了函数的一些知识,如正比例函数的概念及性质,这些都为学习本节内容做好了铺垫。

  2、八年级数学中的一次函数是中学数学中的一种最简单、最基本的函数,是反映现实世界的数量关系和变化规律的常见数学模型之一,也是学生今后进一步学习其它函数的基础。

  3、学生认知障碍点:根据问题信息写出一次函数的表达式。

  教学目标

  1、 理解一次函数与正比例函数的概念以及它们的关系,在探索过程中,发展抽象思维及概括能力,体验特殊和一般的辩证关系。

  2、 能根据问题信息写出一次函数的表达式。能利用一次函数解决简单的实际问题。

  3、 经历利用一次函数解决实际问题的过程,逐步形成利用函数观点认识现实世界的意识和能力。

  教学重点和难点

  1、一次函数、正比例函数的概念及关系。

  2、会根据已知信息写出一次函数的表达式。

  教学过程

一次函数教学反思14

  今天第二节数学课,用课件教学。内容是《一次函数》,内容安排基本合理,通过生活中两个实例,学生活动后,引入一次函数的概念,主要是一次函数的基本形式,及其特例正比例函数。接着练习,主要是辨别一次函数、在什么条件下解析式是一次函数。再通过练习写解析式,最后关于一个结合生活实例的例题和相关的两个练习,总结结束。

  反思:

  1最后的一个练习没有时间,总结的时间没有了。建议只用一个练习。

  2要注意语速和声音音量的控制,不是声音越大越好,注意上课的语言。

  3怎样能最大限度的了解学生对知识掌握的情况?尤其是大班!要学生扮演,浪费时间。在时间很紧的情况下,怎样提高课堂讲课的效率,是今后努力的方向!

  4在教学水平的现在阶段,要提高学生的成绩,最好的捷径就是练习!靠练习提高成绩不是长久之际。

  5真正的要形成自己的教学风格,熟悉教材,熟悉学生。

一次函数教学反思15

  本节教学内容是《二元一次方程与一次函数》,这节课以“回顾,提问”为先导,以“操作,思考”为手段,以“数,形结合”为要求,以“引导,探究”为主线,处处呈现出师生互动,生生互动的景象,较好地体现了新的课程理念与要求,充分让学生自主探究,合作交流,时刻注重学生学习过程的体验与评价。 新的课程标准提出:数学教学活动必须建立在学生的认知发展水平和已有的生活经验基础之上,教师应帮助他们在自主探索的过程中真正理解和掌握基本的数学知识与技能、教学思想和方法,获得广泛的数学活动经验。由此,我设计了本节课的教学设计,基于上完课后的感想,我对本节课有如下的反思:

  一、 成功之处:

  1、 从旧识引入,自然过渡

  这节课由复习一次函数解析式和二元一次方程的形式引入,再提出x+y=5是一次函数还是二元一次方程这一问题,进而引出本节课的第一个内容,激发了学生的兴趣,使他们更快的融入课堂。

  2、 在操作中,提出问题,深化认识

  对于此阶段学生来说,他们乐于探索,富于幻想,但他们的数学推理能力以及对知识的主动迁移能力较弱,为帮助学生更好地构建新的认知结构,促进学生主动发现问题,本节课我让学生亲自动手操作画出一次函数的图像,并解出二元一次方程的解,在画图过程中发现:“以二元一次方程的解为坐标的点都在相应的函数图像上”,接着引导学生反思:“一次函数图像的点坐标都适合相应的二元一次方程吗?”通过举例、验证,得出结论。同样,在探索二元一次方程组与一次函数关系时,也是在操作中发现问题,这样就给了学生充分体验、自主探索知识的机会,使他们在自主探索、合作交流中找到了快乐,深化了认识。

  3、 以能力培养,引导探索为主线,数形结合为要求

  能力的培养是以自主探究为平台,我通过让学生小组交流合作并讨论来解答几个问题,进而得出结论,培养了他们的发现、分析、解决问题、归纳总结的能力。再由二元一次方程与一次函数的关系进一步扩展到二元一次方程组与一次函数的关系,层层递进,学生基本掌握了本节课的重点、难点问题。通过总结二元一次方程组的解法:加减、消元、图像法,通过分析他们的优缺点可知图像法得出的解是近似的这一结论,让学生又体会到了数学的严谨性。在教学过程中,我充分渗透了数形结合的思想,让学生体会了数学的美。

  二、 失败之处

  1、 学生自己画图时不好确定交点坐标,在做这样的题时,就一定会存在如何确定交点的精确度问题,从而使学生会认为应用图像法来解二元一次方程组的方法无用处,进而不重视本节课的内容。

  2、 教学过程中,在探索二元一次方程与一次函数关系时,提出的问题与ppt课件中展示的问题部分重复了,浪费了一些时间,板书设计不够简洁。

  三、 针对以上不足之处我做了如下改进:

  1、 对于交点坐标问题,应该跟同学们讲解清楚,我们要求的是掌握这个解二元一次方程组的图像解法,我们借助科学技术很容易画出一次函数的图像,也就容易找到交点的精确坐标。此外,一般来说如果考试当中是会给出交点的坐标。

  2、 重新整理资料,将一些重复问题删去,提取结论中一些重点语句,关键词,板书做到精炼。