平面直角坐标系教学反思(通用7篇)

王明刚老师

  平面直角坐标系教学反思1

  本课《平面直角坐标系》反映了平面直角坐标系与现实世界的密切联系,让学生认识到数学与人类生活的密切联系和对人类历史发展的作用,也提高了学生参加数学学习活动的积极性和好奇心。因此,首先要确定这节课的教学目标和这节课的教学重点,难点,要在教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境。这节课我以生活中旅游宁夏银川的常识引入主题,让学生在宁夏政区图上找出石嘴山的具体位置。很自然地就引起了学生的极大关注和兴趣,自觉地投入到学习中,这样就会有助于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,在课堂上让学生讲一讲,画一画,尽可能多的为学生创造自主学习、合作交流的机会,使学生成为学习的主体,促使他们主动参与、积极探究。

  《平面直角坐标系》这课在教学上比较容易,课程中的概念性知识比较的多,比较容易安排,所以合理安排好各个知识点以及衔接,就成为上好课的关键。

  一、创设情境,引入新课。

  你能从右图上找出石嘴山的位置吗?

  用现实例子来体现平面内找点————————通过在地图中找位置,让学生用一对数描述宁夏银川的位置,让学生理解在平面内确定点要用一对数。

  接着通过影剧院的两张电影票中的3个问题让学生认识到在一个平面内确定一个物体的位置既要有方向还要有距离。这里的设计主要是让学生有一种认识在平面内描述位置要用两个数据,为下面强调“方向”做好准备,并且加入熟悉的同学的姓名,充分激发学生的兴趣。

  二、共同参与,探索新知。

  这里主要还是以书本上的步骤为主,通过一些多媒体的形象演示让学生更快的掌握。教学中主要是为了让学生更快更容易的理会知识。另外在引入上,我将书上的例子改变为电影票中的座位号,并将本班学生故事的形式编入到情境中,贴近现实生活,且引起了学生极大的兴趣。但是在重点的讲解上还是有些不到的地方,比如在引入上,时间用的较多;在概念知识的给予上,有些机械化,语言的启发上还是有待改进。学生对这类问题还不能很快的接受,应在充分的时间内给予各种变式题的训练,这样学生掌握的情况会更好。在讲解象限时,其实这里要是有一个小的动画或是有个红色的重点提示,让学生认识第一象限的所在,那就更完整了。

  三、强化练习。

  我这节课的练习巩固都是随着新知识一起给出了,想让学生学与练紧密相连,学会就要用上,从整体效果来看还可以,我设计了4组练习,主要是①找坐标;②找点;③象限内点符号知识。④现实运用。在这个练习中尤其是前3个练习是本节课的关键,在找坐标中我最满意的就是设置了”在电影院中找座位号”的小游戏,把教师当作电影院,在教室里建立了平面直角坐标系,让学生自己说出所在位置的坐标。让全班同学都能参与其中,不仅活跃了课堂气氛,还让学生能够更加深切的感受点的坐标。

  本课设计了小结,让学生来总结本节课有那些收获和困惑,不仅归纳了知识点,还注重了数学思想方法在课堂中的渗透。拓宽了学生的知识面,培养了学生的发散思维能力和创新能力。

  本课采用了"创设情境—提出问题—解决问题—应用拓展"的教学过程。这样的学程使学生不仅获得了书本上的知识,而且展示了知识形成过程及对知识理解、以及各个知识间的相互联系,帮助学生形成了知识体系,完善了认知结构,拓展知识应用。这样教学不仅使学生理解了学习内容,而且使学生掌握了学习的方法,更好地利用所学知识解决问题。

  平面直角坐标系教学反思2

  《平面直角坐标系》这节课属概念性教学,且与生活联系较大,因此在教学上比较容易,为更好地体现“以学为主、当堂达标”的教学思路,所以我的这节课是学生在结合预习学案提前预习基础知识的基础上的一节展示课。为更好的创新教学模式,我对自己的这节课反思如下:

  一、教学上我尝试了先学后教,以学定教的教学思路。

  首先,我预设到了学生可以预习好的基本概念如坐标系的概念及点的坐标的表示法等,同时也预设到了象限及不同象限点的坐标特点等知识抽象性,因此在预习案设计上能结合学生实际由易到难地引导锻炼学生对基础知识的理解和学生动手能力的培养。而在展示课上我注意了学生对基础知识的理解巩固和拓展,使学生的数学思维得到了很好的培养和训练。

  二、教学中我利用了多媒体课件培养学生数形结合思想促进教学。

  本节课是学生在初中阶段的第一节代数几何综合性的开端课,为更好地帮助学生理解基础知识进而形成技能,特别是点坐标的确定方法及点到坐标轴的距离等知识的理解,多媒体课件起到了很好的促进作用。

  三、教学中我采用了以“学生展示——教师讲解———应用拓展”的教学思路组织教学。

  为更好地发挥学生的主体地位,关注每一位学生的发展,课堂上我注重创设情景让学生先展示后讲解的方式组织教学,并把相关的基础训练结合到每个环节中,使不同的学生得到了一定的发展。同时,为更好地调动学生的积极性,我还创设情景组织游戏活动,从而让学生感受到生活中处处有数学。通过座位游戏活动让学生再次感知点和数的对应关系,然后上升到理性,使学生的知识得到了拓展应用,效果应该很好,体现了素质教育要求。

  虽然我努力备课组织课堂,也有很多不足。

  1、渗透拓展知识较多,知识细节多,使少部分接受慢的学生没能得到很好的理解和锻炼,这让我明白了拓展知识的有序性和渐进性。

  2、课堂气氛不够活跃,对学生的课堂表达能力还需加强。

  相信我下次再上这节课的时候对于这节课的不足应该会有所改进。

  平面直角坐标系教学反思3

  期末复习课“平面直角坐标系复习”,安排了一课时复习。课前我们精心设计了教案学案,安排前置学习内容,学生课前进行了前置学习训练。

  一、知识点归纳

  上课开始,由学生进行了知识点的回忆:

  1、有序数对;

  2、平面直角坐标系;

  3、特殊位置的点的坐标特征;

  4、用坐标表示地理位置和用坐标表示平移;

  5、点到坐标轴的距离和坐标平面内几何图形的面积。

  老师在学生复习的基础上,提出:除了平面直角坐标系内有序数对的意义还有一些特定的含义,(如前置学习1如果用(7,2)表示七年级二班,那么八年级三班可表示成( ) ,(9,4)表示的含义是( )。坐标平面内有序数对与坐标平面内的点的一一对应,在研究问题时经常用到了数形结合的思想方法。

  二、难点交流

  结合前置学习的情况,给出足够的时间进行交流,提出:交流前置学习题的正确答案是什么;哪几道题的解题过程值得推荐;哪几道题是易错题及其解题注意点。明确了交流任务,学生交流讨论积极踊跃。学生的回答表现了学生知识理解和掌握的深刻。

  在交流哪几道题的解题过程需要一起研究时,多数同学推荐第15题,题目是:“已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是___”,由学生介绍解题书写过程后,提出了OB等于a的绝对值,老师补充:已知点A(4,6),B(3,0),在x轴上求一点C,使△ABC的面积等于12。重点强调了求出BC=4后,由B(3,0)求出的C点有两种情况C(7,0)或(-1,0)。

  学生畅谈在解题时的注意点,4、6、7、8题的距离问题,到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值;4、8、10、15题两解问题,提醒我们思考要严谨;3、5、9题等题目的有序数对的有序问题;14题等题目的审题仔细的问题,点在平移时“左右减加横坐标,上下加减纵坐标”,补充:在△ABC中, A(2,-3)平移到A′(-1,2),求B(3,2)平移后的点B′的坐标,已知平移后的点C′(-4,6),求平移前的点C的坐标。从而关于点的坐标平移还要考虑平移前和平移后。

  在协进学习的教学时,学生独立完成后,侧重讨论了1、2、4题所涉及的知识点和解题思路,学生从讨论后认识到,第1题用到了有理数的加法、乘法法则;第4题是“几个非负数的和为零,则每个加数都为零”的典型题。再由学生上黑板板演并讲解6、7、8三题。学生对6(1)(3)的两种情况有了更深刻的认识。

  提升学习安排的面积问题,重在三角形面积的分割重组,学生提出了多种分割补形方法,通过学生的书写示范,规范了书写要求。

  三、反思提高

  安排教学活动要具体和可操作:学生交流一定要有事可做,在交流前置学习内容时,提出的“正确答案”、“解题过程”、“推荐易错”三个问题保证了学生交流的热烈和有效。

  适当提升使学生复习课也有新收获:在学生推荐协进学习15题后,及时补充上面已知面积求C点坐标,学生进一步感受数形结合和方程思想;交流协进学习14题,增添求平移前和平移后的点的坐标,进一步体会注意平移的“左右”、“上下”和“前后”。

  知识回顾让学生有成就感:协进学习第1、2、4、6、7、8等题目的解题思路和所涉及的知识的回顾,让学生可以以更高的视点分析题目,条件许可还可以由学生进行题目的变化和引申,增加学习数学的兴趣。

  平面直角坐标系教学反思4

  平面直角坐标系是学生从数过渡到形的基础,属于数学建模中的几何建模,因此为了让学生更好的理解这个抽象的概念,教学从学生自主学习开始,学生们从所设置的问题入手,在平面中描述出点的位置,以问题引出知识,进入本节课程的学习。在教学中,运用开放型问题进行发散思维的训练,将封闭型的问题拓展到学生的生活当中,以增强学生的探究意识。

  整个教学过程以问题情境,将小黑板、多媒体综合应用,教给学生如何解决数学模型,建立解决数学问题的思维模式,让学生在问题中学习,这是我认为可以在今后的教学中采用的教学方法。本节课教学立足于问题情境的创设,将原本枯燥的平面直角坐标系与现实生活紧密联系起来,在解决实际问题中学习知识;立足于知识的发现和发展,让学生能在情境问题中理解建立平面直角坐标系的必要性,应用平面直角坐标系去分析和解决实际问题;立足于知识和情感的教育,在知识教学的同时,对学生进行理想教育,又在本课结束前对学生进行人生观的教育。在教学中力求体现学生探究能力的培养,通过问题情境的设计,引导启发学生进行探究及自主学习,并及时地加以总结和反馈,尝试从多角度去体现新课程理念。

  在教学中,我们的习惯是“进行问题教育”——让学生带着问题走进教室,没有问题走出教室,教学中“懂的人问不懂的人”。通过这节课教学,我感觉学生能够提出一个问题比解决一个问题更重要,教师要让学生带着问题走进教室,更要让学生带着更多的问题走出教室,在课堂上激发学生的问题意识,加深问题的深度和广度,让学生努力形成自己解决问题的能力。

  本节课的巩固练习都是随着新问题、新知识一起设计的,让学生的学与练习紧密相连,从教学效果来看还不错,在教学中我设计了4组练习,主要是:

  ①找坐标;

  ②找点;

  ③象限内点的符号;

  ④综合运用。

  在练习中尤其是前3个练习是本节课的重点、难点,在教室里以学生的座位建立平面直角坐标系,让学生自己说出所在位置的坐标。让全体同学参与到活动中来,不仅活跃了课堂气氛,还能让学生加深体验点的坐标以及特征。

  本课采用了"创设情境—提出问题—解决问题—应用拓展"的教学过程。这样的学程使学生不仅获得了书本上的知识,而且展示了知识形成过程及对知识理解、以及各个知识间的相互联系,帮助学生形成了知识体系,完善了认知结构,拓展了知识应用。这样教学不仅使学生理解了学习内容,而且使学生掌握了学习方法,更好地利用所学知识解决问题。

  在本节课的教学过程中还存在一些不足:

  1、整个教学活动中,老师应该适当进行“一题多变”、“一法多用”。这样有利于将学生从思维定势中解脱出来,养成多角度、多方面分析问题的习惯,以培养思维的广阔性和创新性。对于教材中所列举的例题、习题,我们应该以题为载体,阐述试题的条件加强、条件弱化、结论开放、变换结论、与其他试题的联系与区别,将体现试题的知识价值、教育价值,这样达到做一题、会做一类试题效果。

  2、思考题是为后续学习需要设置的,是结合下节课建立直角坐标系的不同点坐标不同而设置的,在多媒体课件中移动的是矩形,而听课后老师们都有不同的意见,有老师建议移动坐标系,经过课后教学思考发现,移动坐标系更能让学生感受到不同坐标系下点的坐标的变化。

  3、数轴上点的坐标特征强化不够到位,并且教学内容稍大,有些前松后紧。

  平面直角坐标系教学反思5

  《平面直角坐标系》这节课在教学上比较容易,课程中的概念性知识比较的多,比较容易安排,所以合理安排好各个知识点以及衔接,就成为上好课的关键。

  本课主要还是以书本上的步骤为主,讲授直角坐标系的相关知识,通过确定平面内一点P来引入平面直角坐标系,并且阐述要在平面内表示某个点的位置要用一对有序实数对来表示,即点的坐标。这个过程既让学生理解了直角坐标系的相关概念,同时也让学生明白了如何在一个平面内将某个点的位置用坐标表示出来。

  我这节课的练习巩固都是随着新知识一起给出了,想让学生学与练紧密相连,学会就要用上,从整体效果来看还可以。

  我设计了4组练习,主要是:

  ①找出所给的点的坐标;

  ②根据所给的几个特殊点归纳出在横轴和纵轴上的点的坐标的特征;

  ③请一位同学在所给的坐标平面上指一个点,另一个同学说出它的坐标,答对了这个同学也可以请另外的同学说出他所指的点的坐标,以此类推;

  ④现实运用,在班级中建立直角坐标平面,请学生自己所在的位置的坐标。

  本课灵活运用了多种教学方法,既有教师的讲解,又有讨论,在教师指导下的自学,组织游戏活动等。调动了学生学习的积极性,充分发挥了学生的主体作用。通过游戏活动让学生再次感知点和数的对应关系,然后上升到理性,从而突破了难点,效果应该很好,体现了素质教育要求。课堂拓展了学生学习空间,给学生充分发表意见的自由度。

  平面直角坐标系教学反思6

  根据教学设计本节课主要从以下几个方面进行反思:

  一、教材分析和学情分析

  从整套教材及本章两个方面分析了本节的知识不仅是后面坐标方法的简单应用的基础,也是后继学习函数的图像,函数与方程和不等式的关系等知识的坚实基础。从学生的认知规律来看,初一学生主要以形象思维为主,数形结合思想意识的形成是本节的重点和难点。在此基础上,制订了合理的教学目标及教学重点和难点,在制订教学目标时,不仅有知识与技能目标,更注重过程与方法目标和情感态度与价值观目标,同时,注重数形结合思想的形成这一难点的突破。

  二、教法与学法分析

  根据本节课的特点主要运用了情景教学法和发现教学法,激发学生的探索欲望,激活学生的思维,充分体现教师主导与学生主体相结合。呈现学生独立思考、自主探究、合作交流的学习模式。

  三、教过程学

  1、创设情境,孕育新知

  情境1:引导学生借助数轴来解决问题,使学生将新旧知识联系起来,符合学生的认知规律,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上这一新课程理念。

  情景2:从学生熟知的生活情境入手,让学生思维实现从一维向二维的过渡,同时让学生感受数学与现实生活的紧密联系,激发学生的'兴趣与探究欲望。

  2、引导发现,探索新知

  通过情景设置和问题的提出,让学生对数学家以及他的贡献有所了解,从而对学生进行数学文化方面的熏陶和理想教育, 并为下一步介绍平面直角坐标系做好铺垫,同时,在活动中培养学生的探究、合作、交流的能力。

  问题3、4的解决,是本节课的核心环节。教师的讲解配以多媒体的直观演示,能更好的突破难点,将枯燥的知识趣味化,同时,及时的反馈练习,让学生将知识转化成自身的技能,从而更好的实现本节课的教学目标。

  3、分层练习,巩固新知

  通过分层练习,让每一位学生都能运用自己在本节课所掌握的知识解决问题,体验成功的喜悦,同时,根据新课标“让每个学生都获得自己力所能及的数学知识”这一理念,让不同的学生有不同的收获与发展。

  4、知识小结,收获新知

  一方面对本节课的知识点作一个复习与小结,另一方面,让学生学会梳理自己的思路,养成良好的学习习惯。整个教学过程中,我通过设计以上四个教学活动,引导学生从已有的知识出发,主动探索具体的生活情境问题,积极参与合作交流,获取知识,发展思维,形成技能,同时也让学生感受数学学习的乐趣。

  四、板书设计

  本节的板书设计突出了两个重点:构成平面直角坐标系的三要素,点的坐标的特点。

  五、评价分析

  本节课的教学过程,立足于问题情境的创设,将原本枯燥的知识兴趣化,教师在教学中做好引导者,让学生在自主探究,合作交流中获取知识,体现出教师为主导,学生为主体,练习为主线的教学理念和教学规律,注重学生能力的培养和情感教育,多方位地体现新课标的理念。

  平面直角坐标系教学反思7

  “平面直角坐标系”反映了平面直角坐标系与现实世界的密切联系,让学生认识到数学与人类生活的密切联系和对人类历史发展的作用,也提高了学生参加数学学习活动的积极性和好奇心。因此,首先要确定这节课的教学目标和这节课的教学重点,难点,要在教学过程中创设生动活泼、直观形象,且贴近他们生活的。问题情境。

  “平面直角坐标系”是学生从数过渡到形的基础,属于数学建模中的几何建模,因此为了让学生更好的理解这个抽象的概念,教学从生活实际背景开始,学生们从所设置的练习入手,进入本节的学习。在教学中,运用开放型问题进行发散思维的训练,将封闭型的问题改编到生活当中,以增加发散的成分和探究的因素。

  我通过创设情境:

  ⑴老师提问时会说:“请第X排第X列的同学回答。”

  ⑵一位新同学想去商店买文具,可他对这里不熟悉,就问其他同学商店的位置?有同学就告诉他出校门往东走200米,再往北走300米就是商店。

  ⑶新乡位于北纬41.0°,东经118.68°。这些现象有何共同特点?这些现象与我们所学的数学有关系吗?

  在现实的生活中,还有这样的例子很多,你们能不能举出一些现实生活中用一对数来表示位置的例子呢?让学生小组讨论,全班交流,这些都反映了一对数和位置的对应关系。

  让学生动手画一个直角坐标系,建立有序实数对与坐标平面内的点的对应关系,然后再通过练习,让学生掌握已知点求坐标和已知坐标描点的技能,领悟平面直角坐标系中点与有序数对的一一对应关系。通过小组讨论:

  ①坐标轴上的点的坐标有什么特征?

  ②各个象限内的点的坐标有什么特征?

  ③横坐标或纵坐标相等的点有什么特征?

  ④各个象限中角平分线上的点的坐标有什么特征?

  通过这节课小组合作交流,发现学生特别积极活跃,学生与学生之间的相互交流,使每一位学生都有均等的参与交流展示的机会。我感到非常高兴,由于运用“自主、合作、探究“的学习方式,不仅为学生自主发展拓展了空间,而作为教师已不必告诉他们应当学什么东西,学生已经有了兴趣学习更多的知识和探究更深入的问题的强烈愿望。

  但在教学过程中还有很多的不足:如拓展知识较多,知识细节较多,致使少部分接受慢的学生没能得到很好的理解和锻炼,这让我明白了拓展知识的有序性和渐进性;有时课堂气氛不够活跃;对学生的课堂表达能力还需加强训练。在教学过程中,仅仅用课内几分钟时间,要求学生领悟数学思想方法,懂得数学价值,升华情感,对大多数学生来说可能要求太高。有效的办法是课内外相结合,在课前向学生布置相关的学习任务,使学生有足够的思考时间。