关于《实数》教学反思范文(精选六篇)

李盛老师

  《实数》教学反思1

  本课例通过问题1学生会发现:有些数不属于有理数,从而比较自然地给出无理数和实数的概念,使学生感受到把有理数扩展到实数的必要性。由于在前面已经见过无限不循环小数,很自然引出“无理数”的概念。无理数和实数是本课的重点之一。

  通过问题2让学生类比有理数的分类方法,讨论如何对实数进行分类对实数进行分类,让学生进一步领会分类的思想,培养学生的思维的灵活性和严谨性,同时也能使学生加深对无理数和实数的理解,通过学生互相的讨论和交流,可以深刻体验知识之间的内在联系,初步形成对实数系整体性的认识。问题3通过对实数分类的练习与巩固,加深学生对各种数的认识,加深对实数概念的理解。问题4是从学生已有的知识出发,克服困难,创造性地找到数轴上π、的具体位置,体会无理数的存在性。借助数轴对无理数进行研究,从形的角度,再一次体会无理数。

  本节课的教学设计中注重从学生已有的知识经验出发,如学生在有理数章节中已经学习了有理数可以用数轴上的点表示,所以在教学中充分发挥学生的主体意识,让学生主动参与学习活动,除了让学生看课件演示外,更通过让学生动手实验操作,感悟知识的生成、发展和变化,自己探索得到结论:实数与数轴上的点的一一对应关系,从而培养学生自主探索的学习方法,同时也感受实数与数轴上点的一一对应关系,进一步体会数形结合思想。

  在处理这段教材时,没有刻意地增加难度,而是立足教材,紧紧围绕课本,尊重教材,挖掘教材,从“情境设计——例题选择——课堂引申”都是以教材内容为载体,充分开发教材的功能。循序渐进地引导学生去学习新知,使学生能准确地把握学习重点,突破学习难点。整节课安排层次分明,条理清晰,特别是问题6设计的几个小问题,层层递进,分散了难点。问题5、问题6更进一步让学生明白了无理数也可以表示在数轴上这一事实,并且学会了在数轴上表示一个无理数和找出数轴上的点所表示的实数。从学生的表情可以看出,他们挺得意的,又认识了一种数。

  但问题6还是有一定困难,有的学生看到题目不知所措,通过老师的层层设问,学生的眉头展开了,有了感谢老师的表情,从这里可以看出,教师的“画龙点睛”是必要的'。在另一个班讲的时候,我在课堂上取消了问题6,作业6画上*号,只供学有余力的学生做。

  建议:给可以推荐学生学习一篇文章《无理数的由来》,了解一点数学史,激发读书热情。

  《实数》教学反思2

  1.本节是在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数范围。从有理数到实数,这是数的范围的一次重要扩充,对今后学习数学有重要意义。在中学阶段,多数数学问题是在实数范围内研究。例如,函数的自变量和因变量是在实数范围内讨论,平面几何、立体几何中的几何量(长度、角度、面积、体积等)都是用实数表示等。实数的知识贯穿于中学数学学习的始终,学生对于实数的运算,以后还要通过学习二次根式的运算来加深认识,因此本节的作用十分重要。

  2.在本节课中为了突出重点,突破难点,我将教学分层次进行,先从从一个探究活动开始,活动中要求学生把几个具体的有理数写成小数的形式,并分析这些小数的共同特征,从而得出任何一个有理数都可以写成有限小数和无限循环小数的形式。把有理数与有限小数和无限循环小数统一起来以后,指出在前两节学过的很多数的平方根和立方根都是无限不循环小数,它们不同于有限小数和无限循环小数,也就是一类不同于有理数的数,由此给出无理数的概念。无限不循环小数的概念在前面两节已经出现,通过强调无限不循环小数与有限小数和无限循环小数的区别,以使学生更好地理解有理数和无理数是两类不同的数。帮助学生建立有意义的知识联结,顺应认知结构中的原有体系,以逐步探究的思路实现对问题的深层次理解,增强思维的深刻性。

  3.在探究有理数规律的过程中,使学生在探究时,经历了观察、实验、归纳、总结以及由具体到抽象、由特殊到一般的学习过程,体会到了研究问题、解决问题的方法,加深了对无理数的理解。在处理这段教材时,没有刻意地增加难度,而是立足教材,紧紧围绕课本,尊重教材,挖掘教材,从情境设计—例题选择—课堂引申都是以教材内容为载体,充分开发教材的功能。循序渐进地引导学生去学习新知,使学生能准确地把握学习重点,突破学习难点。

  4.本节课通过学生的主动智力参与,动手实践、自主探索与合作交流等活动,使学生在教师的主导作用下,实现对实数概念的自我建构。特别是在数轴上表示无理数,以探究题卡的形式让学生自主完成,充分体现了自主探究教学法。

  5.教师在培养学生学习兴趣,激发良好学习动机中承担一定的责任。恰当地提出问题和恰当地运用课堂互动策略十分重要。在课堂的准备与指导阶段充分了解学生,进行有效提问,为学生提供及时适当的反馈,运用课堂竞争、合作策略来促进良性课堂互动,实现教学目标。

  但本节课存在许多不足,对于学生对无理数概念的理解估计不足,而且课堂气氛相当沉闷,教学效果不是很好。在今后的教学中自己在备学生时应着重考虑学生可能出现的这样或那样的情况,在教学手段和教学方法上应力求做到更新,以吸引学生的注意力,达到最佳效果。

  总之,自己在教学中需要学习和改正的地方还很多很多,我将继续不断探索,不断研究,虚心求教,尽快提高自己的教育教学能力。

  《实数》教学反思3

  《实数》第一课时授课后,我颇有几分感慨。这节课,我认为有以下几方面是值得肯定的。

  一、建立和谐的师生关系是激发学生学习兴趣的基础。

  良好的师生关系是激发学生学习兴趣、在教学过程中,要达到教学目标,就必须用激励性的教学语言,营造和谐的教学环境。课前鼓励学生。几句鼓励赞美的话,就能使学生树立起克服困难、积极进取的信心和志气,因而在课堂上同学们认真思考,积极发言,课堂气氛活跃。

  二、多媒体教学手段的恰当运用增加了课堂的灵活性。

  多媒体课件的使用,极大的调动了学生的积极性。PPT课件多彩生动鲜艳的特点,极大的刺激了学生的感官,给学生留下来深刻的印象。课件同时也减少了教师课堂上写、画的工夫,节约时间,可以在短时间内解决较多的问题,提高了课堂效率,同时有效地解决了内容繁多课时不足的矛盾。多媒体手段的使用确定好最佳时机,才能发挥其最大功效。在这节课中我恰当地采用多媒体教学手段,在数轴上找表示点时,采用动态演示,使学生更加直观地看到了任意一个无理数都可以在数轴上找到一个点和它对应,降低了问题的难度,学生很容易就接受了,从而扩展了数学空间。

  三、增强了提问的针对性。

  让学生认真思考分数形式的实数都是什么数。从有无循环节来区别有理数和实数的实质。

  四、自身的欠缺也是有的。

  一是时间安排紧。对学生而言,只看问题的表面,不能够举一反三,同一题目不能归类去解决,造成做练习时花费了过多的时间;对我而言,由于第一次给这些学生上课,把学生的程度估计不足,题量大、难度也有点大,致使有些学生在有限的时间内不能及时回答问题,造成时间的浪费。

  二是鼓励性语言使用得不够多,没有大面积调动学生回答问题的积极性。另外,有的同学回答问题后没有及时给予肯定。

  本次教学,我坚持从教材入手,;从学生入手,做到了在尊重个体差异,真正地使学生表明自己的看法,阐述自己的观点,大胆表现自我,张扬个性,体现出他们这个年龄应有的特点,因此,我认为这节课不仅很好地实现了知识与技能目标,对于过程与方法和情感态度与价值观两个目标的实现也非常到位,是比较成功的。

  在今后的教学中,我都应该经常反思自己:这节课总体设计是否得当,教学环节是否科学,教学内容是否突出重难点,教学手段的运用是否恰当,哪些行为是正确的,需有继续坚持;哪些做得还不够好,需要调整、改进;学生的积极性是否调动起来了,学生情绪得是否愉快;我教得是否成功,还有什么困惑等。

  百尺竿头,更进一步。我将不断追求更高境界,努力使自己的课堂教学更加贴近学生,使学生真正在快乐中学习,享受学习的快乐。

  《实数》教学反思4

  上完《实数》这节课后,我常常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!比如明明重复了好多遍“a2的平方根是±a”,可是学生每次做题仍是按“a2的平方根是a”计算。也常听见学生这样的埋怨:巩固题做了几十遍,数学成绩却不见提高!这不能不引起我的反思了。确实,出现上述情况涉及方方面面,但我认为其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题归例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。

  事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。我认为应从以下几方面做一些探讨:

  一、在解题的方法规律处反思。

  “例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。通过例题的层层变式,培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。

  二,在学生易错处反思。

  学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!

  (1)计算常出现哪些方面的错误?

  (2)出现这些错误的原因有哪些?

  (3)怎样克服这些错误呢?可让同学们各抒己见,针对各种“病因”开出有效的“方子”。

  实践证明,这样的例题教学是成功的,学生在计算的准确率、以及速度两个方面都有极大的提高。

  《实数》教学反思5

  本节采用与有理数对照的形式,引入了无理数的概念,进而以在数轴上表示和为例,说明数轴上如何表示无理数。最后把数的概念扩充到实数范围。然后在实数范围内说明如何运用相反数和绝对值的定义进行相反数和绝对值的化简。整节课的设计流畅,目标明确,重难点把握适当。

  在教学过程中,老师能把握好教学尺度,调动学生的积极性,运用生本教育的理念,让学生自己去领会实数的概念。在几个知识点中,合并同类根式是学生的难点。老师用了较多时间进行训练。

  教学中需要注意的问题有:

  (1)近似计算训练较少。学生对近似理解不到位,准备工作不足,还有部分学生没有计算器。

  (2)教学难度的把握不统一。各个班级的教学程度相差较大。实验班和平行班的要求没有明确达到何种程度。导致了部分班级学生产生分化。

  (3)数学思想的渗透不够。本节是一一对应、数形结合、分类、类比等思想的典型学习材料,在教学过程中挖掘得还不够。

  《实数》教学反思6

  本节课的教学目标是知道相反数、绝对值的概念可推广到实数范围内;知道在实数范围内,可进行加、减、乘、除(除数不为0)、乘方、开方(开平方时被开方数为非负数)等运算,而且有理数的运算法则和性质同样适用。

  本节课的教学设计中注重从学生已有的知识经验出发,如学生在有理数章节中已经学习了知道相反数、绝对值的概念,回忆有理数范围内相反数、绝对值的意义,体会在实数范围内这些概念依旧成立,在比较的过程中让学生体会一个很重要的数学思想:转化思想。学生在类比有理数中求相反数和绝对值进行计算的意识和能力,对学生所出现的错误要了解其原因并加以纠正。问题3先复习七年级上已经学习过的有理数范围内的运算律,然后提出一个富有启发性且具有探索意义的问题“我们如何知道运算律在实数范围内是否适用?”然后通过问题4的体验,培养学生的合情推理能力和计算能力。由于有了有理数的运算性质作基础,学生在掌握求实数的相反数、绝对值并不困难,但求的值有一些困难,关键是要判断与2的大小,要能判断是正数还是负数,问题5进一步让学生明白了在有理数范围可以进行的运算,在实数范围内一样适用。

  最后的综合训练题也有一些困难。在今后教学中还要注意加强训练,提高综合解题能力。