高二数学算法教学计划安排

李盛老师

高二数学算法教学计划安排

  教学目标:

  1. 知识与技能目标:

  (1)了解中国古代数学中求两个正整数最大公约数的算法以及割圆术的算法;

  (2)通过对“更相减损之术”及“割圆术”的学习,更好的理解将要解决的问题“算法化”

  的思维方法,并注意理解推导“割圆术”的操作步骤。

  2. 过程与方法目标:

  (1)改变解决问题的思路,要将抽象的数学思维转变为具体的步骤化的思维方法,提高逻

  辑思维能力;

  (2)学会借助实例分析,探究数学问题。

  3. 情感与价值目标:

  (1)通过学生的主动参与,师生,生生的合作交流,提高学生兴趣,激发其求知欲,培养探索精神;

  (2)体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。

  教学重点与难点:

  重点:了解“更相减损之术”及“割圆术”的算法。

  难点:体会算法案例中蕴含的算法思想,利用它解决具体问题。

  教学方法:

  通过典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑

  结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。

  教学过程:

  教学

  环节 教学内容 师生互动 设计意图

  创设 情境

  引入新课 引导学生回顾

  人们在长期的生活,生产和劳动过程中,创造了整数,分数,小数,正负数及其计算,以及无限逼近任一实数的方法,在代数学,几何学方面,我国在宋,元之前也都处于世界的前列。我们在小学,中学学到的算术,代数,从记数到多元一次联立方程的求根方法,都是我国古代数学家最先创造的'。更为重要的是我国古代数学的发展有着自己鲜明的特色,也就是“寓理于算”,即把解决的问题“算法化”。本章的内容是算法,特别是在中国古代也有着很多算法案例,我们来看一下并且进一步体会“算法”的概念。

  教师引导,学生回顾。

  教师启发学生回忆小学初中时所学算术代数知识,共同创设情景,引入新课。

  通过对以往所学数学知识的回顾,使学生理清知识脉络,并且向学生指明,我国古代数学的发展“寓理于算”,不同于西方数学,在今天看仍然有很大的优越性,体会中国古代数学对世界数学发展的贡献,增强爱国主义情怀。

  阅读课本 探究新知

  1. 求两个正整数最大公约数的算法

  学生通常会用辗转相除法求两个正整数的最大公约数:

  例1:求78和36的最大公约数

  (1) 利用辗转相除法

  步骤:

  计算出78 36的余数6,再将前面的除数36作为新的被除数,36 6=6,余数为0,则此时的除数即为78和36的最大公约数。

  理论依据: ,得 与 有相同的公约数

  (2) 更相减损之术

  指导阅读课本P ----P ,总结步骤

  步骤:

  以两数中较大的数减去较小的数,即78-36=42;以差数42和较小的数36构成新的一对数,对这一对数再用大数减去小数,即42-36=6,再以差数6和较小的数36构成新的一对数,对这一对数再用大数减去小数,即36-6=30,继续这一过程,直到产生一对相等的数,这个数就是最大公约数

  即,理论依据:由 ,得 与 有相同的公约数

  算法: 输入两个正数 ;

  如果 ,则执行 ,否则转到 ;

  将 的值赋予 ;

  若 ,则把 赋予 ,把 赋予 ,否则把 赋予 ,重新执行 ;

  输出最大公约数

  程序:

  a=input(“a=”)

  b=input(“b=”)

  while a<>b

  if a>=b

  a=a-b;

  else

  b=b-a

  end

  end

  print(%io(2),a,b)

  学生阅读课本内容,分析研究,独立的解决问题。

  教师巡视,加强对学生的个别指导。

  由学生回答求最大公约数的两种方法,简要说明其步骤,并能说出其理论依据。

  由学生写出更相减损法和辗转相除法的算法,并编出简单程序。

  教师将两种算法同时显示在屏幕上,以方便学生对比。

  教师将程序显示于屏幕上,使学生加以了解。 数学教学要有学生根据自己的经验,用自己的思维方式把要学的知识重新创造出来。这种再创造积累和发展到一定程度,就有可能发生质的飞跃。在教学中应创造自主探索与合作交流的学习环境,让学生有充分的时间和空间去观察,分析,动手实践,从而主动发现和创造所学的数学知识。

  求两个正整数的最大公约数是本节课的一个重点,用学生非常熟悉的问题为载体来讲解算法的有关知识,,强调了提供典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。为了能在计算机上实现,还适当展示了将自然语言或程序框图翻译成计算机语言的内容。总的来说,不追求形式上的严谨,通过案例引导学生理解相应内容所反映的数学思想与数学方法。