人教版初三数学教学计划(通用五篇)

王明刚老师

  初三数学教学计划1

  本学期初三数学教学工作主要学习初三《代数》的第十二章和第十三章的部分内容、《几何》第六章和第七章的部分内容。

  九义教材初三数学学科包括第三册《代数》和第三册《几何》。

  初三《代数》包括一元二次方程、函数及其图象和统计初步三章内容,其中一元二次方程一章的主要内容为:一元二次方程的解法和列方程解应用题,一元二次方程的根的判别式,根与系数的关系,以及与一元二次方程有关的分式方程的解法;重点是一元二次方程的解法和列方程解应用题;难点是配方法和列方程解应用题;关键是一元二次方程的解法。函数及其图象一章的主要内容是函数的概念、表示法、以及几种简单的函数的初步介绍;重点是一次函数的概念、图象和性质;难点是对函数的意义和函数的表示法的理解;关键是处理好新旧知识联系,尽可能减少学生接受新知识的困难。统计初步一章的主要内容和重点是平均数、方差、众数、中位数的概念及其计算,频率分布的概念和获取方法,以及样本与总体的关系。

  初三《几何》包括解直角三角形和圆两章内容,其中解直角三角形一章的主要内容为锐角三角函数和解直角三角形,也是本章重点;难点和关键是锐角三角函数的概念。圆一章的主要内容为圆的概念、性质、圆与直线、圆与角、圆与圆、圆与正多边形的位置、数量关系;重点是圆的有关性质、直线与圆、圆与圆相切的位置关系,以及和圆有关的计算问题;难点是运用本章及以前所学几何或代数知识解决一些综合性较强的题目;关键是对圆的有关性质的掌握。

  初三《代数》和《几何》是初中数学的重要组成部分,通过初三数学的教学,要使学生学会适应日常生活,参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识饩黾虻氖导饰侍猓?嘌 ?氖?Т葱乱馐丁⒘己酶鲂云分室约俺醪降奈ㄎ镏饕骞邸?/SPAN。

  本学年我担任初三年级31、33两个班的数学教学工作。其两班学生在数学学科的基本情况是:大多数学生对初二学年的数学基础知识掌握太差,很多知识只限于表面了解,机械记忆,忽视内在的、本质的联系与区别,不注重对知识的理解、掌握及灵活运用,特别是少数学生对某些章节(如四边形、分式、二次根式等)或者是一问三不知,或者是张冠李戴。就班级整体而言,33班成绩大多处于中等偏下,31班成绩大多处于中等层次。

  针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:

  1、 新课开始前,用一个周左右的时间简要复习初二学年的所有内容,特别是几何部分。

  2、 教学过程中尽量采取多鼓励、多引导、少批评的教育方法。

  3、 教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。

  4、 新课教学中涉及到旧知识时,对其作相应的复习回顾。

  5、 坚持以课本为主,要求学行完成课本中的练习、习题(A组)、复习题(A组)和自我测验题,学生做完后教师讲解,少做或不做繁、难、偏的数学题目。

  6、 复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

  7、 利用各种综合试卷、模拟试卷和样卷考试训练,使学生逐步适应考试,最终适应并考出好成绩。

  8、 教学中在不放松36班的同时,狠抓35班的基础部分。

  内 容

  复习初二内容

  解直角三角形

  一元二次方程

  圆

  函数及其图像

  统计初步

  综合复习模拟训练

  除了以上计划外,我还将预计开展转化个别后进生工作,教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力,重视实习作业,另外,以2012年研讨会和相关信息为依据,带领初三全体学生密切关注2012年动向,为迎接中考作好充分的准备。教学中 细节方面的内容还有待于在具体的工作中进一步探索、补充和完善。

  初三数学教学计划2

  一、学生知识状况分析

  学生的知识技能基础:学生在初二上学期已经学习过开平方,知道一个正数有两个平方根,会利用开方求一个正数的两个平方根,并且也学习了完全平方公式。在本章前面几节课中,又学习了一元二次方程的概念,并经历了用估算法求一元二次方程的根的过程,初步理解了一元二次方程解的意义;

  学生活动经验基础:在相关知识的学习过程中,学生已经经历了用计算器估算一元二次方程解的过程,解决了一些简单的现实问题,感受到解一元二次方程的必要性和作用,基于学生的学习心理规律,在学习了估算法求解一元二次方程的基础上,学生自然会产生用简单方法求其解的欲望;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。

  二、教学任务分析

  教科书基于学生用估算的方法求解一元二次方程的基础之上,提出了本课的具体学习任务:用配方法解二次项系数为1且一次项系数为偶数的一元二次方程。但这仅仅是这堂课具体的教学目标,或者说是一个近期目标。而数学教学的远期目标,应该与具体的课堂教学任务产生实质性联系。本课《配方法》内容从属于“方程与不等式”这一数学学习领域,因而务必服务于方程教学的远期目标:“让学生经历由具体问题抽象出方程的过程,体会方程是刻画现实世界中数量关系的一个有效模型,并在解一元二次方程的过程中体会转化的数学思想”,同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课的教学目标是:

  1、会用开方法解形如(x?m)2?n(n?0)的方程,理解配方法,会用配方法解二次项系数为1,一次项系数为偶数的一元二次方程;

  2、经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效模型,增强学生的数学应用意识和能力;

  3、体会转化的数学思想方法;

  4、能根据具体问题中的实际意义检验结果的合理性。

  三、教学过程分析

  本节课设计了五个教学环节:第一环节:复习回顾;第二环节:情境引入;第三环节:讲授新课;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。

  第一环节:复习回顾

  活动内容:1、如果一个数的平方等于4,则这个数是 ,若一个数的平方等于7,则这个数是 。一个正数有几个平方根,它们具有怎样的关系?

  2、用字母表示完全平方公式。

  3、用估算法求方程x2?4x?2?0的解?你喜欢这种方法吗?为什么?你能设法求出其精确解吗?

  活动目的:以问题串的形式引导学生逐步深入地思考,通过前两个问题,引导学生复习开平方和完全平方公式,通过后一个问题的回答让学生进一步体会用估计法解一元二次方程较麻烦,激发学生的求知欲,为学生后面配方法的学习作好铺垫。

  实际效果:第1和第2问选两三个学生口答,由于问题较简单,学生很快回答出来。第3问由学生独立练习,通过练习,学生既复习了估算法,同时又进一步体会到了估算法较麻烦,达到了激发学生探索新解法的目的。

  第二环节:情境引入

  活动内容:(1)工人师傅想在一块足够大的长方形铁皮上裁出一个面积为100CM2正方形,请你帮他想一想,这个正方形的边长应为 ;若它的面积为75CM2,则其边长应为 。(选1个同学口答)

  (2)如果一个正方形的边长增加3cm后,它的面积变为64cm2,则原来的正方形的边长为 。若变化后的面积为48cm2呢?(小组合作交流)

  (3)你会解下列一元二次方程吗?(独立练习)

  x2?5; (x?2)2?5; x2?12x?36?0。

  (4)上节课,我们研究梯子底端滑动的距离x(m)满足方程x2?12x?15?0,你能仿照上面几个方程的解题过程,求出x的精确解吗?你认为用这种方法解这个方程的困难在哪里?(合作交流)

  活动目的:利用实际问题,让学生初步体会开方法在解一元二次方程中的应用,为后面学习配方法作好铺垫;培养学生善于观察分析、乐于探索研究的学习品质及与他人合作交流的意识。

  实际效果:在复习了开方的基础上,学生很快口答出了第1问,为解决第二问做好了准备。第2问让学生合作解决,学生在交流如何求原来正方形的边长时,产生了不同的方法,有的学生直接开方先求出了新正方形的边,再减增加的边长,求出原来的正方形的边长;有的同学用了方程,设原正方形的边长为xcm,根据题意列出了一元二次方程(x?3)2?64;(x?3)2?48然后两边开方,根据实际情况求出了原来正方形的边长,这样,再一次经历了用一元二次方程解决实际问题的过程,并初步了解了开方法在一元二次方程中的简单应用。在第2问的基础上,学生很快解决了第3问。但学生在解决第4问时遇到了困难,他们发现等号的左端不是完全平方式,不能直接化成(x?m)2?n (n?0)的形式,因此大部分同学认为这个方程不能用开方法解,那么如何解决这样的方程问题呢?这就是我们本节课要来研究的问题(自然引出课题),为后面探索配方法埋好了伏笔。

  第三环节:讲授新课

  活动内容1:做一做:(填空配成完全平方式,体会如何配方)

  填上适当的数,使下列等式成立。(选4个学生口答)

  x2?12x?_____?(x?6)2 x2?6x?____?(x?3)2

  x2?8x?____?(x?___)2 x2?4x?____?(x?___)2

  问题:上面等式的左边常数项和一次项系数有什么关系?对于形如x2?ax的式子如何配成完全平方式?(小组合作交流)

  活动目的:配方法的关键是正确配方,而要正确配方就必须熟悉完全平方式的特征,在此通过几个填空题,使学生能够用语言叙述并充分理解左边填的是“一次项系数一半的平方”,右边填的是“一次项系数的一半”,进一步复习巩固完全平方式中常数项与一次项系数的关系,为后面学习掌握配方法解一元二次方程做好充分的准备。

  实际效果:由于在复习回顾时已经复习过完全平方式,所以大部分学生很快解决四个小填空题。通过小组的合作交流,学生发现要把形如x2?ax的式子a如何配成完全平方式,只要加上一次项系数一半的平方即加上()2即可。而2

  且讲解中小组之间互相补充、互相竞争,气氛热烈,使如何配成完全平方式的方法更加透彻。事实上,通过对配方的感知的过程,学生都能用自己的语言归纳总结出配成完全平方式的方法,这就为下一环节“用配方法解一元二次方程”打好基础。由此也反映出学生善于观察分析的良好品质,而这种品质是在学生自觉行为中得到培养的,体现了学生良好的情感、态度、价值观。 活动内容2:解决例题

  (1)解方程:x2+8x-9=0、(师生共同解决)

  解:可以把常数项移到方程的右边,得

  x2+8x=9

  两边都加上(一次项系数8的一半的平方),得

  x2+8x+42=9+42、

  (x+4)2=25

  开平方,得 x+4=±5,

  即 x+4=5,或x+4=-5、

  所以 x1=1, x2=-9、

  (2)解决梯子底部滑动问题:x2?12x?15?0(仿照例1,学生独立解决) 解:移项得 x2+12x=15,

  两边同时加上62得,x2+12x+62=15+36,即(x+6)2=51

  两边开平方,得x+6=±51 所以:x1??6,x2??51?6,但因为x表示梯子底部滑动的距离所以x2??51?6 不合题意舍去。 答:梯子底部滑动了(51?6)米。

  活动内容3:及时小结、整理思路

  用这种方法解一元二次方程的思路是什么?其关键又是什么?(小组合作交流)

  活动目的:通过对例1和例2的讲解,规范配方法解一元二次方程的过程,让学生充分理解掌握用配方法解一元二次方程的基本思路及关键是将方程转化成(x?m)2?n(n?0)形式,同时通过例2提醒学生注意:有的方程虽然有两个不同的解,但在处理实际问题时要根据实际意义检验结果的合理性,对结果进行取舍。由于此问题在情境引入时出现过,因此也达到前后呼应的目的。最后由问题“用这种方法解一元二次方程的思路是什么?”引出配方法的定义。

  实际效果:学生经过前一环节对配方法的特点有了初步的认识,通过两个例题的处理,进一步完善对配方法基本思路的把握,是对配方法的学习由探求迈向实际应用的第一步。最后利用两个问题,通过小组的合作交流得出配方法的基本思路和解决问题的关键,结论的得出来源于学生在实例分析中的亲身感受,体现学生学习的主动性。

  活动内容4、应用提高

  例3:如图,在一块长和宽分别是16米和12米的长方形耕地上挖两条宽度相等的水渠,使剩余的耕地面积等于原来长方形面积的一半,试求水渠的宽度。(先独立思考,再小组合作交流)

  活动目的:在前两个例题的基础上,通过例3进一步提高学生分析问题解决问题的能力,帮助学生熟练掌握配方法在实际问题中的应用,也为后续学习做好铺垫。实际效果:大部分学生通过独立思考,结合图形很快列出了方程,在交流过程中小组成员之间产生了分歧,有的同学认为,如果设水渠的宽为x米,则1?12?16;有的同学认为如果设水渠的宽为x21米,则方程应该是16?12?12x?16x?x2??12?16,并且给出了合理的解2方程应该是(16?x)(12?x)?

  释;有的同学则认为,如果剩余的耕地面积等于原来的一半则意味着水渠的面积也等于原来长方形面积的一半,所以方程可以列为:12x?16x?x2?1?12?16。面对这些问题,组织学生解他们2所列出的几个方程,然后再让小组成员合作交流讨论,通过讨论,学生发现这三种方法都正确,并且指出第一种方法可以利用平移水渠,把分割成的四部分拼在一起,构成了一个较大的矩形(如下图),然后再利用矩形的面积公式列出方程,此种方法在解决此类问题时最简单。这样通过学生之间的争论、辩论提高了课堂效率,激发了学生学习数学的热情,达到了资源共享。

  第四环节:练习与提高

  活动内容:解下列方程

  (1)x2?10x?25?7;(2)x2?6x?1;(3)x(x?14)?0(4)x2?8x?9

  活动目的:对本节知识进行巩固练习。

  实际效果:此处留给学生充分的时间与空间进行独立练习,通过练习,学生基本都能用配方法解解二次项系数为1、一次项系数为偶数的一元二次方程,取得了较好的教学效果,加深了学生对“用配方法解简单一元二次方程”的理解。

  第五环节:课堂小结

  活动内容:师生互相交流、总结配方法解一元二次方程的基本思路和关键,以及在应用配方法时应注意的问题。

  活动目的:鼓励学生结合本节课的学习,谈自己的收获与感想(学生畅所欲言,教师给予鼓励)。

  实际效果:学生畅所欲言谈自己的切身感受与实际收获,掌握了配方法的基本思路和过程。

  第六环节:布置作业

  课本50页习题2、3 1题、2题

  四、教学反思

  1、 创造性地使用教材

  教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。学生在初一、初二已经学过完全平方公式和如何对一个正数进行开方运算,而且普遍掌握较好,所以本节课从这两个方面入手,利用几个简单的实际问题逐步引入配方法。教学中将难点放在探索如何配方上,重点放在配方法的应用上。本节课老师安排了三个例题,通过前两个例题规范用配方法解一元二次方程的过程,帮助学生充分掌握用配方法解一元二次方程的技巧,同时本节课创造性地使用教材,把配方法(3)中的一个是设计方案问题改编成一个实际应用问题,让学生体会到了方程在实际问题中的应用,感受到了数学的实际价值。培养了学生分析问题,解决问题的能力。

  2、 相信学生并为学生提供充分展示自己的机会

  课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及组织小组合作学习,帮助学生形成积极主动的求知态度。本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,并且在此过程中教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学。

  3、注意改进的方面

  在小组讨论之前,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。教师应对小组讨论给予适当的指导,包括知识的启发引导、学生交流合作中注意的问题及对困难学生的帮助等,使小组合作学习更具实效性。

  初三数学教学计划3

  初三《代数》包括一元二次方程、函数及其图象和统计初步三章内容,其中一元二次方程一章的主要内容为:一元二次方程的解法和列方程解应用题,一元二次方程的根的判别式,根与系数的关系,以及与一元二次方程有关的.分式方程的解法;重点是一元二次方程的解法和列方程解应用题;难点是配方法和列方程解应用题;关键是一元二次方程的解法。函数及其图象一章的主要内容是函数的概念、表示法、以及几种简单的函数的初步介绍;重点是一次函数的概念、图象和性质;难点是对函数的意义和函数的表示法的理解;关键是处理好新旧知识联系,尽可能减少学生接受新知识的困难。统计初步一章的主要内容和重点是平均数、方差、众数、中位数的概念及其计算,频率分布的概念和获取方法,以及样本与总体的关系。

  初三《几何》包括解直角三角形和圆两章内容,其中解直角三角形一章的主要内容为锐角三角函数和解直角三角形,也是本章重点;难点和关键是锐角三角函数的概念。圆一章的主要内容为圆的概念、性质、圆与直线、圆与角、圆与圆、圆与正多边形的位置、数量关系;重点是圆的有关性质、直线与圆、圆与圆相切的位置关系,以及和圆有关的计算问题;难点是运用本章及以前所学几何或代数知识解决一些综合性较强的题目;关键是对圆的有关性质的掌握。

  初三《代数》和《几何》是初中数学的重要组成部分,通过初三数学的教学,要使学生学会适应日常生活,参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识饩黾虻氖导饰侍猓培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。

  本学年我担任初三年级31、33两个班的数学教学工作。其两班学生在数学学科的基本情况是:大多数学生对初二学年的数学基础知识掌握太差,很多知识只限于表面了解,机械记忆,忽视内在的、本质的联系与区别,不注重对知识的理解、掌握及灵活运用,特别是少数学生对某些章节(如四边形、分式、二次根式等)或者是一问三不知,或者是张冠李戴。就班级整体而言,33班成绩大多处于中等偏下,31班成绩大多处于中等层次。本学期初三数学教学工作主要学习初三《代数》的第十二章和第十三章的部分内容、《几何》第六章和第七章的部分内容。

  初三《代数》包括一元二次方程、函数及其图象和统计初步三章内容,其中一元二次方程一章的主要内容为:一元二次方程的解法和列方程解应用题,一元二次方程的根的判别式,根与系数的关系,以及与一元二次方程有关的分式方程的解法;重点是一元二次方程的解法和列方程解应用题;难点是配方法和列方程解应用题;关键是一元二次方程的解法。函数及其图象一章的主要内容是函数的概念、表示法、以及几种简单的函数的初步介绍;重点是一次函数的概念、图象和性质;难点是对函数的意义和函数的表示法的理解;关键是处理好新旧知识联系,尽可能减少学生接受新知识的困难。统计初步一章的主要内容和重点是平均数、方差、众数、中位数的概念及其计算,频率分布的概念和获取方法,以及样本与总体的关系。

  初三《几何》包括解直角三角形和圆两章内容,其中解直角三角形一章的主要内容为锐角三角函数和解直角三角形,也是本章重点;难点和关键是锐角三角函数的概念。圆一章的主要内容为圆的概念、性质、圆与直线、圆与角、圆与圆、圆与正多边形的位置、数量关系;重点是圆的有关性质、直线与圆、圆与圆相切的位置关系,以及和圆有关的计算问题;难点是运用本章及以前所学几何或代数知识解决一些综合性较强的题目;关键是对圆的有关性质的掌握。

  初三《代数》和《几何》是初中数学的重要组成部分,通过初三数学的教学,要使学生学会适应日常生活,参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识饩黾虻氖导饰侍猓培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。

  本学年我担任初三年级31、33两个班的数学教学工作。其两班学生在数学学科的基本情况是:大多数学生对初二学年的数学基础知识掌握太差,很多知识只限于表面了解,机械记忆,忽视内在的、本质的联系与区别,不注重对知识的理解、掌握及灵活运用,特别是少数学生对某些章节(如四边形、分式、二次根式等)或者是一问三不知,或者是张冠李戴。就班级整体而言,33班成绩大多处于中等偏下,31班成绩大多处于中等层次。

  针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:

  1、新课开始前,用一个周左右的时间简要复习初二学年的所有内容,特别是几何部分。

  2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。

  3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。

  4、新课教学中涉及到旧知识时,对其作相应的复习回顾。

  5、坚持以课本为主,要求学行完成课本中的练习、习题(A组)、复习题(A组)和自我测验题,学生做完后教师讲解,少做或不做繁、难、偏的数学题目。

  6、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

  7、利用各种综合试卷、模拟试卷和样卷考试训练,使学生逐步适应考试,最终适应中考并考出好成绩。

  8、教学中在不放松36班的同时,狠抓35班的基础部分。

  除了以上计划外,我还将预计开展转化个别后进生工作,教学中注重数学理论与社会实践的联系,鼓励学生多观察、多思考实际生活中蕴藏的数学问题,逐步培养学生运用书本知识解决实际问题的能力,重视实习作业,另外,以20xx年中考研讨会和相关信息为依据,带领初三全体学生密切关注20xx年中考动向,为迎接中考作好充分的准备。教学中细节方面的内容还有待于在具体的工作中进一步探索、补充和完善。

  初三数学教学计划4

  一、内容和内容解析

  (一)内容

  一元二次方程的概念,一元二次方程的一般形式、

  (二)内容解析

  一元二次方程是方程在一元一次方程基础上 “次”的推广,同时它是解决诸多实际问题的需要,为勾股定理、相似等知识提供运算工具,是二次函数的基础、

  针对一系列实际问题,建立方程,引导学生观察这些方程的共同特点,从而归纳得出一元二次方程的概念及一般形式、在这个过程中,通过归纳具体方程的共同特点,得出一元二次方程的概念,体现了研究代数学问题的一般方法;一般形式ax2+bx+c=0也是对具体方程从“元”(未知数的个数)、“次数”和“项数”等角度进行归纳的结果;a≠0的条件是确保满足 “二次”的要求,从另一个侧面为理解一元二次方程的概念提供了契机、

  二、目标和目标解析

  (一)教学目标

  1、体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念;

  2、了解一元二次方程的一般形式,会将一元二次方程化成一般形式、

  (二)目标解析

  1、通过建立一元方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程、学生能举例说明一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,体会到学习的必要性;

  2、将不同形式的一元二次方程统一为一般形式,学生从数学符号的角度,体会概括出数学模型的简洁和必要,针对“二次”规定a≠0的条件,完善一元二次方程的概念、学生能够将一元二次方程整理成一般形式,准确的说出方程的各项系数,并能确定简单的字母系数方程为一元二次方程的条件、

  三、教学问题诊断分析

  一元二次方程是学生学习的第四个方程知识,首先在初一学习了一元一次方程,接着扩展“元”得到二元一次、三元一次方程,完成了二元一次方程组的学习,初二分式的教学,使得对实际问题的刻画从整式推广到有理式,分式方程得以出现,到一元二次方程第一次实现 “次”的提升、学生必然存在着疑问,为什么有些背景列得的方程是二次的呢?教学中要直面学生的疑问,显化学生的疑问,启发学生自己解释疑问,才能避免“灌输”,体现知识存在的必要性,增强学好的信念、

  培养建模思想,进一步提升数学符号语言的应用能力, 让学生自己概括出一元二次方程的概念,得出一般形式,对初三学生是必须的,也是适可的、

  本课的教学重点应该放在形成一元二次方程概念的过程上,不能草草给出方程的概念就反复辨析练习,在概念的理解上要下功夫、

  本课的教学难点是一元二次方程的概念、

  四、教学过程设计

  (一)创设情境,引入新知

  教师展示教科书本章的章前图,请同学们阅读章前问题,并回答:

  问题1.这个方程属于我们学过的某一类方程吗?

  师生活动:学生整理已经学过的方程类型,复习方程的概念,元与次的概念,观察新方程,分析此方程的元与次,尝试为新方程命名、

  设计意图

  使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识、

  问题2.这样的方程在其他实际问题中是否还存在呢?你能再想出一个例子吗?

  师生活动:学生思考二次项产生的原因,从熟悉的实际背景中,很有可能从矩形的面积出发,设计情境、

  设计意图

  让学生从“接受式”的学习方式中走出来,走向对一元二次方程产生的根源的探求,在编制情境的过程中,他们将加深对一元二次方程概念的理解、部分学生能够独立解决问题,自己编制情境并列出方程,部分学生可以根据同学给出的情境去列方程,或者阅读课本上的实际问题、

  (二)拓宽情境,概括概念

  给出课本问题1、问题2的两个实际问题,设未知数,建立方程、

  问题1 如图21、1-1,有一块矩形铁皮,长100 cm,宽50 cm、在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒、如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?

  个队参赛,则每个队要与其他____个队各赛一场,全部比赛共有___ 场、

  由此,我们可以列出方程______________,化简得________________、

  问题3. 这些方程是几元几次方程?

  师生活动:学生将实际问题中的语言转化成数学的符号语言,体会运算关系,寻找等量关系,学习建模、将列得的方程化简整理,判断出方程的次数、

  设计意图

  在建模的过程中不仅加强学生的数学思维能力,而且对二次项产生的根源将更加明晰,加深对一元二次方程的理解、让学生回答方程的元与次,一是让他们体会统一成一般形式的必要性,为概念的形成做铺垫,分解教学的难点;二是让他们明确教学的主线,从被动学习走向主动学习、

  问题4.这些方程是什么方程?

  师生活动:观察本课得出的一些方程,思考它们的共性,同学们尝试给出一元二次方程的定义,并且概括出一元二次方程的一般形式、

  1、一元二次方程的概念:

  等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2(二次)的方程叫做一元二次方程、

  2、一元二次方程的一般形式是

  是二次项,a是二次项系数;

  开发学生认识的资源,激发学生从不同角度、不同形式去深入理解同一概念,让不同的学生在此过程中获得不同的收获,实现分层教学分层指导的效果、

  问题6. 下列方程哪些是一元二次方程?

  例1、下列方程哪些是一元二次方程?

  (1)

  ;

  (3)

  ;

  (5)

  、

  答案(2)(5)(6)、

  师生活动:用概念指导辨析,方程(3)与(4)同学们可能会产生争议,(3)帮助学生明确一元二次方程是整式方程,(4)体会化为一般形式的必要性,对a≠0条件加深认识、

  设计意图

  补足学生所举正反例的缺漏,追问:有二次项的一元方程就是一元二次方程吗?帮助学生进一步巩固概念,深化对一元、二次的认识、

  问题7.指出下列方程的二次项、一次项和常数项及它们的系数、

  例2、 将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:

  (1)

  师生活动: (1)将方程

  ,移项,合并同类项得:

  ,二次项系数是3;一次项是

  ,常数项是

  ,过程略、

  例3、关于x的方程

  时此方程为一元二次方程;

  时此方程为一元一次方程、

  设计意图

  在形式比较复杂的方程面前,通过辨析方程的元、次、项看清方程的本质,深化理解,淡化对一元二次方程概念的记忆、

  (四)巩固概念,学以致用

  教科书第4页: 练习

  设计意图

  巩固性练习,同时检验一元二次方程概念的掌握情况、

  (五)归纳小结,反思提高

  请学生总结今天这节课所学内容,通过对比之前所学其它方程,谈对一元二次方程概念的认识,反思学习过程中的典型错误、

  (六)布置作业:教科书习题21、1

  复习巩固:第1,2,3题、

  五、目标检测设计

  1、下列方程哪些是关于x的一元二次方程

  (1)

  ;(3)

  、

  设计意图

  考查对一元二次方程概念的理解、

  2、关于

  是一元二次方程,则( )、

  A、

  C、

  设计意图

  考查

  的一元二次方程

  初三数学教学计划5

  一、教学内容

  本章较为系统的研究成比例线段、相似图形、相似三角形、中位线、位似图形、图形与坐标等,探索并体验相似在现实生活中的广泛应用。本章是继图形的全等之后集中研究图形形状的内容,是对图形全等知识的进一步拓展和发展。整个设计力图引导学生观察、分析生活现实和教学现实的相似现象,总结图形相似的有关特征并自觉应用到现实之中。同时,通过“相似图形”进一步丰富学生的教学活动经验,有意识的培养学生积极的情感态度,认识教学丰富的人文价值,促进学生观察、分析、归纳、概括等一般能力和审美意识的发展。

  二、教学目标

  1、通过生活中的实际认识物体和图形的相似,知道相似与轴对称、平移、旋转一样,也是图形之间的一种变换。

  2、探索并确认相似图形的性质,知道相似多边形的对应角相等,对应边成比例以及面积比的关系。

  3、了解线段的比、成比例线段的概念,比例的基本性质,会判断以知线段是否成比例。

  4、了解相似三角形的概念,探索两个三角形相似的条件及其主要性质。

  5、能利用相似三角形的性质解决一些简单的实际问题。

  6、了解图形的位似,能利用位似的方法将一个图形放大或缩小。

  7、了解三角形和梯形的中位线定理、三角形重心的概念以及有关应用。

  8、能建立适当的坐标系,描述物体的位置。能灵活运用不同的方式确定物体的位置。

  9、在同一直角坐标系中,感受图形变换后点的坐标的变化。

  10、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生的演绎推理能力。

  三、教学重点难点

  1、教学重点:成比例线段、相似三角形和相似多边形的性质和判定,位似图形的概念和作法。

  2、教学难点:利用性质和判定分析和解决问题。

  3、教学关键:成比例线段、相似三角形的性质和判定。

  四、教学策略

  1、采用引导发现法培养学生类比推理能力;采用尝试指导法,逐步培养学生独立思考的能力及语言表达能力。充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识。

  2、让学生充分发表自己的见解,给学生一定的时间和空间自主探索每一个问题,而不是急于告诉学生结论。

  3、充分发挥小组合作,多开展讨论交流,让学生自己找到答案。