特级教案六年级数学模板

马振华老师

2021特级教案六年级数学模板1

教学目标:

1.利用正比例解决一些简单的生活问题,感受正比例关系在生活中的广泛应用。

2.能根据正比例的意义,判断两个相关联的量是不是成正比例。

3.结合丰富的事例,认识正比例。

教学重点:

1、结合丰富的事例,认识正比例。

2、能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学难点:

能根据正比例的意义,判断两个相关联的量是不是成正比例。

教学用具:课件

教学过程:

一、 课前预习

预习书19---21页内容

1、填好书中所有的表格

2、理解粉色框中话的意义,体会正比例的两个量有怎样的关系?

3、把不理解的内容用笔作重点记号,待课上质疑解答

二、展示与交流

活动一:在情境中感受两种相关联的量之间的变化规律。

(一)情境一:

1、 观察图,分别把正方形的周长与边长,面积与边长的变化情况填入表格中。请根据你的观察,把数据填在表中。

2、填完表以后思考:正方形的周长与边长,面积与边长的变化是否有关系?它们的变化分别有怎样的规律?规律相同吗?

说说从数据中发现了什么?

3、小结:正方形的周长和面积都随边长的增加而增加,在变化过程中,正方形的周长与边长的比值一定都是4。正方形的面积一边长的比是边长,是一个不确定的值。

说说你发现的规律。

(二)情境二:

1、一种汽车行驶的速度为90千米/小时。汽车行驶的时间和路程如下:

2、请把下表填写完整。

3、从表中你发现了什么规律?

说说你发现的规律:路程与时间的比值(速度)相同。

(三)情境三:

1、一些人买一种苹果,购买苹果的质量和应付的钱数如下。

2、把表填写完整。

3、从表中发现了什么规律?

应付的钱数与质量的比值(也就是单价)相同。

4、说说以上两个例子有什么共同的特点。

小结:路程随时间的变化而变化,在变化过程中路程与时间的比值相同;应付的钱数随购买苹果的质量的变化而变化,在变化过程中应付的钱数与质量的比值相同。

5、正比例关系:

(1)时间增加,所走的路程也相应增加,而且路程与时间的比值(速度)相同。那么我们说路程和时间成正比例。

(2)购买苹果应付的钱数与质量有什么关系?

6、观察思考成正比例的量有什么特征?

一个量随另一个量的变化而变化,在变化过程中这两个量的比值相同。

(四)想一想:

1、正方形的周长与边长成正比例吗?面积与边长呢?为什么?

师小结:

(1)正方形的周长随边长的变化而变化,并且周长与边长的比值都是4,所以正方形的周长与边长成正比例。

请你也试着说一说。

(2)正方形的面积虽然也随边长的变化而变化,但面积与边长的比值是一个变化的值,所以正方形的面积和边长不成正比例。

请生用自己的语言说一说。

2、小明和爸爸的年龄变化情况如下:

小明的年龄/岁67891011

爸爸的年龄/岁3233

(1)把表填写完整。

(2)父子的年龄成正比例吗?为什么?

(3)爸爸的年龄=小明的年龄+26。虽然小明岁数增加,爸爸岁数也增加,但是小明岁数与爸爸岁数的比值随着时间发生变化,不是一个确定的值,所以父子的年龄不成正比例。

与同桌交流,再集体汇报

在老师的小结中感受并总结正比例关系的特征

2021特级教案六年级数学模板2

教学目标:

1、经历正比例意义的建构过程,通过具体问题认识成正比例的量,能找出生活中成正比例量的实例,能正确判断成正比例的量。

2、通过观察、比较、分析、归纳等数学活动,发现正比例量的特征,并尝试抽象概括正比例的意义。提高分析比较、归纳概括、判断推理能力,同时渗透初步的函数思想。

3、在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与人交流。

教学过程:

一、谈话导入

1. 出示苹果、梨、橘子的图片 问:起一个总的名称是什么?

2. 出示:仿照第一题填空

(1)时间:3小时 20分 2小时45分

(2)总价:5元 ( ) ( )

(3)( ):6千克 800克 3吨350克

填后问:左边的是什么?右边对应的是什么?你还能举出一种量和它对应的数吗?

二、学习新课

(一)相关联的量

教师做实验,向弹簧称上加钩码问:

(1) 这其中有哪两种变化着的量?(2)弹簧长度为什么会变化?

指出:弹簧长度是随着钩码数量的变化而变化的,像这样的两种量我们把他们叫做相关联的量。

追问:现在你知道什么叫相关联的量了吗?你能举例说明吗?

(二)学习成正比例的量

1、出示19页表格

观察图像,填表,回答下面的问题:

(1) 表中有哪两个相关联的量?

(2) 正方形的周长是怎样随着边长的变化而变化的?

(3) 正方形的面积是怎样随着边长的变化而变化的?

(4)它们的变化规律相同吗?

小组讨论交流汇报

2、20页第2题

3、正比例的意义

(1)例1和例2有什么共同点?(两种相关联的量,比值一定)

师指出:这样的两种量就是成正比例的量,他们的关系叫成正比例关系。

问:现在你知道什么叫成正比例的量了吗?自由说说 指生回答 阅读课本

师板书关系式:y/x=k(一定)

(2) 那么,要判断两种量是否成正比例的量该看什么呢?

三、 巩固提高:19页说一说。

四、 全课小结

2021特级教案六年级数学模板3

教学目标:

1、结合具体情境,体会生活中存在着大量互相依赖的变量;

2、在具体情境中,尝试用自己的语言描述两个量之间的关系。

教学过程:

一、创设情境、导入新课

1、师:生活中有哪些变化的现象?这些现象可以用数学的方法表示吗?

(学生已经完成“课前准备”,选择几个学生回答)

2、师:在生活中,很多事物在发生变化。如:人的年龄、身高、体重在变,我国的人均收入、生产总值等等都在变化,象这样的会变化的量,我们都称为变量。

3、师:象这样的例子很多,今天我们就来学习“变化的量”。

设计意图:学生预习后直接导入新课,加深对“变化的量”的认识,寻找生活中的量的认识,引起新课的学习积极性。本环节的课前准备是要学生独立完成。

二、进行新课,掌握变量。

1、请独立完成导学案的“学一学”。

2、师:小组交流刚才的自主学习的内容。并确定中心发言人。

3、小组进行自我展示。

(1)小明的体重变化情况表。

学生谈群学体会:人的年龄和体重是相关联的两个量,人的体重随着年龄的变化而变化。

教师小结。我发现(体重)随(年龄)的增加而增加。

设计意图:课本呈现出第一幅情景图,表格的形式让学生更加清晰的了解年龄与体重的变化,能够回答问题,发现年龄与体重的变化情况,小明的体重随年龄的变化,学生先观察然后回答问题。

(2)沙漠之舟

师:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。(课件出示:出示骆驼体温随时间的变化统计图。)

A、从图中你知道了什么信息?

B、一天中,骆驼体温是多少?最低是多少?

C、一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?

D、第二天8时骆驼的体温与前一天8时的体温有什么关系?

E、每天骆驼的体温总是怎样变化的?

教学意图:通过教学第二幅情景图,认识有关沙漠之舟的基本知识,拓宽学生的课外知识面。读懂统计图,回答问题,通过问题,发现规律。这是本环节的教学目标,学生对于折线统计图的认识已有基础。

3、蟋蟀与气温的关系

A、出示蟋蟀叫的次数与气温之间关系的情境图。

B、你能用式子表示这个近似关系吗?

生:气温h=t÷7+3。

C、理解式子中量的变化。

师:如果蟋蟀叫了7次,这时的气温大约是多少?

如果蟋蟀叫了14次,这时的气温大约是多少?

如果蟋蟀叫了28次呢?

你能发现蟋蟀叫的次数与气温之间是怎样变化的?

小结:通过举例我们可以发现一个量随另一个量变化而变化,这些量就是变化的量。

教学意图:这环节学生理解蟋蟀的叫声用关系式表示,大多学生通过书上的文字提示,都可以完成关系式,个别不行的,就个别辅导。

三、课堂巩固,加深理解。

1.说一说,一个量怎样随另一个量变化。

(1)一种故事书每本3元,买书的总价与书的本数。

(2)一个长方形的面积是24平方厘米,长方形的长与宽。

2、小明到商店买练习簿,每本单价2元,购买的总数x(本)与总金额y(元)的关系式,可以表示为: 。

设计意图:我在这一课的练习设计上,没有太多的练习量,反而注重巩固课本上的练习。由难到易,重质不重量,希望通过补充练习提高后进生的课堂参与度,帮助部分学生的梳理知识。

四、全课小结,谈谈收获。

师:在生活中还有很多象这样相关联的两个变量,一个量总是随着另一个量的变化而变化,谁还能举出一些这样的例子?

2021特级教案六年级数学模板4

教学目标:

1.结合具体目标,体会生活中存在着大量互相依存的变量。

2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。

教学重点:

结合具体目标,体会生活中存在着大量互相依存的变量。

教学难点:

在具体情境中,尝试用自己的语言描述两个变量之间的关系。

教学用具:课件

教学过程:

一、 课前预习

1、预习书18页内容,尝试回答书上的问题

2、找一找其中的变量,想一想它们之间有没有关系?如果有,有怎样的关系?

3、仔细看书,看看哪些关系能够用式子表示?

二、课堂展示

活动一:观察并回答。

1、下表是小明的体重变化情况。

观察表中所反映的内容,搞清楚表中所涉及的量是哪两个量?观察后请回答。

2、上表中哪些量在发生变化?

3、说一说小明10周岁前的体重是如何随年龄增长而变化的?

小结:小明的体重随年龄的增长而变化。2—6岁和6---10岁是体重的增长高峰。说明这两个阶段是孩子成长的重要阶段。

4、体重一直会随年龄的增长而变化吗?这说明了什么?

说明:体重和年龄是一组相关联的量。体重的增长是随着人的生长规律而确定的。

1、教育学生要合理饮食,适当控制自己的体重。

活动二:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。

观察书上统计图:

1、图中所反映的两个变化的量是哪两个?

2、横轴表示什么?纵轴表示什么?

同桌两人观察并思考,得出结论后,记录在书上,然后再在全班汇报说明。

3、一天中,骆驼的体温是多少?最低是多少?

4、一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?

5、第二天8时骆驼的体温与前一天8时的体温有什么关系?

6、 骆驼的体温有什么变化变化的规律吗?

活动三:某地的一位学生发现蟋蟀叫的次数与气温之间有如下的近似关系。

1、 蟋蟀1分叫的次数除以7再加3,所得的结果与当时的气温值差不多。

2、 如果用 t 表示蟋蟀每分叫的次数,你能用公式表示这个近似关系吗?请你写出这个关系式,全班展示,交流。

3、你还发现生活中有哪两个量之间具有变化的关系?它们之间是怎样变化的?四人小组交流你收集到的信息,选派代表请举例说明

4、 你还发现我们学过的数学知识中有哪些量之间具有变化的关系?

三、反馈与检测

1、连一连,把相互变化的量连起来。

路程 正方形周长

边长 购卖数量

总价 行驶时间

2、说一说,一个量怎样随另一个量变化。

(1)一种故事书每本3元,买书的总价与书的本数。

(2)一个长方形的面积是24平方厘米,长方形的长与宽。

3、小明到商店买练习簿,每本单价2元,购买的总数x(本)与总金额y(元)的关系式,可以表示为:

四、全课小结:今天我们研究的两个量都是相关联的。它们之间在变化的时候都具有一定的关系。下一节课我们将深入研究具有相关联的两个量,在变化时有相同的变化特征,这样的知识在数学上的应用。

2021特级教案六年级数学模板5

[教学目标]:

1.结合具体情境,体会生活中存在着大量互相依赖的变量。

2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。

[教材分析]:

教材通过让学生观察表格、图像、关系式,尝试用自己的语言描述两个变量之间的变化,为后面学习正比例、反比例打下基础,同时体会函数思想。

教材呈现了三个具体情境,鼓励学生在观察、思考、讨论和交流中,体会在生活情境中,存在着大量互相依赖的变量:一个量变化,另一个量也会随着发生变化,两个变量之间存在着关系。这三个情境分别用表格、图像和关系式呈现变量之间的关系,以使学生体会表示变量之间关系的多种形式。

[学校及学生状况分析]:

我校是一所民办实验小学,学校的数学的课堂教学中以学生为本,突显人文性,这样学生喜爱学习数学,敢于在课堂上表现自我,学生有较好的思维能力,探索能力和合作能力。

[教学过程]:

一、创设情境,导入新课。

1、用手势表示出自己从出生到现在身高的变化。

2、用手势表示出自己从出生到现在体重的变化。

3、师:身高、体重都会变化,这些都是变化的量。(板书课题)

二、观察表格,感知变量。

1、出示小明的体重变化情况表。

师:这是小明的体重变化情况表。

(1)从表中你知道了什么信息?

(2)上表中哪些量在发生变化?

(3)师生共同画一画小明的体重变化情况折线统计图。

(4)说一说小明10周岁前的体重是如何随年龄增长而变化的。

2、说一说。

(1)我发现( )随( )的增加而增加。

(2)我发现( )随( )的减少而减少。

3、师:通过你们举的例子,可以发现什么?

三、通过读图,感受变量。

1、师:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。

2、出示骆驼体温随时间的变化统计图。

3、读懂统计图。

(1)从图中你知道了什么信息?

(2)一天中,骆驼体温是多少?最低是多少?

4、感受量的周期变化。

(1)一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?

(2)第二天8时骆驼的体温与前一天8时的体温有什么关系?

(3)第二天,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?第三天呢?第十天呢?

(4)师:每天骆驼的体温总是怎样变化的?

四、建立模型,感悟变量。

1、出示叫的蟋蟀叫的次数与气温之间关系的情境。

2、你能用式子表示这个近似关系吗?

即气温h=t÷7+3。

3、理解式子中量的变化。

师:如果蟋蟀叫了7次,这时的气温大约是多少?

如果蟋蟀叫了14次,这时的气温大约是多少?

如果蟋蟀叫了28次呢?

你能发现蟋蟀叫的次数与气温之间是怎样变化的?

4、举出而变化的例子。

5、通过举例我们可以发现一个量随另一个量变化而变化,这些量就是变化的量。

五、课堂巩固,加深理解。

1、连一连,把相互变化的量连起来。

路程 正方形周长

边长 购卖数量

总价 行驶时间

2、说一说,一个量怎样随另一个量变化。

(1)一种故事书每本3元,买书的总价与书的本数。

(2)一个长方形的面积是24平方厘米,长方形的长与宽。

六、全课小结,谈谈收获。