九年级数学试题练习
一、选择题(每小题3分,共30分)
1.在△ABC中,∠C=90°,如果tanA=512,那么sinB=( )
A.513 B.1213 C.512 D.125
2.抛物线y=-(x+2)2+3的顶点坐标是( )
A.(-2,3) B.(2,3)
C.(2,-3) D.(-2,-3)
3. 如图,在⊙O中,AB(=AC(,∠AOB=122°,则∠AOC的度数为( )
A.122° B.120° C.61° D.58°
4.已知α为锐角,sin(α-20°)=32,则α=( )
A.20° B.40° C.60° D.80°
5.关于二次函数y=(x+2)2的图象,下列说法正确的是( )
A.开口向下 B.最低点是A(2,0)
C.对称轴是直线x=2 D.对称轴的右侧部分y随x的增大而增大
6.(济宁中考) 如图,斜面AC的坡度(CD与AD的比)为1∶2,AC=35米,坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带相连,若AB=10米,则旗杆BC的高度为( )
A.5米 B.6米 C.8米 D.(3+5)米
7.(绍兴中考)如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则AC(的长为( )
A.2π B.Π C.π2 D.π3
8.(上海中考)如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是( )
A.AD=BD B .OD=CD
C.∠CAD=∠CBD D.∠OCA=∠OCB
9.已知二次函数y=x2+bx+3如图所示,那么函数y=x2+(b-1)x+3的图象可能是( )
10.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与过A点的⊙O的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是( )
二、填空题(每小题4分,共32分)
11.如图,∠BAC位于6×6的方格纸中,则tan∠BAC=____________.
12.函数y=x2+bx-c的图象经过点(1,2),则b-c的值为____________.
13.如图,小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,出发时,在B点他观察到仓库A在他的北偏东30°处,骑行20分钟后到达C点,发现此时这座仓库正好在他的东南方向,则这座仓库到公路的距离为____________千米.(参考数据:3≈1.732 ,结果精确到0.1)
14.(上海中考)如果将抛物线y=x2+2x-1向上平移,使它经过点A(0,3),那么所得新抛物线的表达式是____________.
15.如图,已知AB是⊙O的直径,弦CD⊥AB,AC=22,BC=1,那么cos∠ABD的值是____________.
16.如图,点A、B、C在直径为23的⊙O上,∠BAC=45°,则图中阴影的面积等于____________(结果中保留π).
17.如图,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿A→C→B→A的路线匀速运动一周,速度为1个单位长度/秒,以O为圆心,3为半径的圆在运动过程中与△ABC的边第二次相切时是出发后第____________秒.
18.(菏泽中考)如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=x23(x≥0)于B,C两点,过点C作y轴的平行线交y1于点D,直线DE‖AC,交y2于点E,则DEAB=____________.
三、解答题(共58分)
19.(8分)已知:如图,⊙O的半径为3,弦AB的长为4.求sinA的值.
20.(8分)已知二次函数y=a(x-h)2+k(a≠0)的图象经过原点,当x=1时,函数有最小值为-1.
(1)求这个二次函数的表达式,并画出图象;
(2)利用图象填空:这条抛物线的开口向____________,顶点坐标为____________,对称轴是直线____________,当____________时,y≤0.
21.(10分)(大庆中考)如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.
(1)求证:CB‖PD;
(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.
22.(10分)(绍兴中考)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6 m到达B点,测 得杆顶端点P和杆底端点Q的仰角分别是60°和30°.
(1)求∠BPQ的度数;
(2)求该电线杆PQ的高度.(结果精确到1 m,参考数据:3≈1.7,2≈1.4)
23.(10分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)求证:∠C=2∠DBE;
(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)
24.(12分)(遵义中考)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,-23),且与y轴交于点C(0,2),与x轴交于A、B两点(点A在点B的左边).
(1)求抛物线的表达式及A、B两点的坐标;
(2)在(1)中抛物线的.对称轴l上是否存在一点P,使AP+CP的值最小,若存在,求AP+CP的最小值;若不存在,请说明理由;
(3)在以AB为直径的⊙M中,CE与⊙M相切于点E,CE交x轴于点D,求直线CE的表达式.
九年级数学同步练习
一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)
1. 已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点P
A. 在⊙O外 B. 在⊙O上 C. 在⊙O内 D. 不能确定
2. 已知△ABC中,∠C=90°,AC=6,BC=8, 则cosB的值是
A.0.6 B.0.75 C.0.8 D.
3.如图,△ABC中,点 M、N分别在两边AB、AC上,MN∥BC,则下列比例式中,不正确的是
A . B .
C. D.
4. 下列图形中,既是中心对称图形又是轴对称图形的是
A. B. C. D.
5. 已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2= cm,则⊙O1和⊙O2的位置关系是
A.外离 B.外切 C.内切 D.相交
6. 某二次函数y=ax2+bx+c 的图象如图所示,则下列结论正确的是
A. a>0, b>0, c>0 B. a>0, b>0, c<0
C. a>0, b<0, c>0 D. a>0, b<0, c<0
7.下列命题中,正确的是
A.平面上三个点确定一个圆 B.等弧所对的圆周角相等
C.平分弦的直径垂直于这条弦 D.与某圆一条半径垂直的直线是该圆的`切线
8. 把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是
A.y=-(x+3)2-2 B.y=-(x+1)2-1
C.y=-x2+x-5 D.前三个答案都不正确
二、填空题(本题共16分, 每小题4分)
9.已知两个相似三角形面积的比是2∶1,则它们周长的比 _____ .
10.在反比例函数y= 中,当x>0时,y 随 x的增大而增大,则k 的取值范围是_________.
11. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________.
12.已知⊙O的直径AB为6cm,弦CD与AB相交,夹角为30°,交点M恰好为AB的一个三等分点,则CD的长为 _________ cm.
三、解答题(本题共30分, 每小题5分)
13. 计算:cos245°-2tan45°+tan30°- sin60°.
14. 已知正方形MNPQ内接于△ABC(如图所示),若△ABC的面积为9cm2,BC=6cm,求该正方形的边长.
15. 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB的长为12米,调整后的楼梯所占地面CD有多长?(结果精确到0.1米;参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)
16.已知:△ABC中,∠A是锐角,b、c分别是∠B、∠C的对边.
求证:△ABC的面积S△ABC= bcsinA.
17. 如图,△ABC内接于⊙O,弦AC交直径BD于点E,AG⊥BD于点G,延长AG交BC于点F. 求证:AB2=BF?BC.
18. 已知二次函数 y=ax2-x+ 的图象经过点(-3, 1).
(1)求 a 的值;
(2)判断此函数的图象与x轴是否相交?如果相交,请求出交点坐标;
(3)画出这个函数的图象.(不要求列对应数值表,但要求尽可能画准确)
四、解答题(本题共20分, 每小题5分)
19. 如图,在由小正方形组成的12×10的网格中,点O、M和四边形ABCD的顶点都在格点上.
(1)画出与四边形ABCD关于直线CD对称的图形;
(2)平移四边形ABCD,使其顶点B与点M重合,画出平移后的图形;
(3)把四边形ABCD绕点O逆时针旋转90°,画出旋转后的图形.
20. 口袋里有 5枚除颜色外都相同的棋子,其中 3枚是红色的,其余为黑色.
(1)从口袋中随机摸出一
一枚棋子,摸到黑色棋子的概率是_______ ;
(2)从口袋中一次摸出两枚棋子,求颜色不同的概率.(需写出“列表”或画“树状图”的过程)
21. 已知函数y1=- x2 和反比例函数y2的图象有一个交点是 A( ,-1).
(1)求函数y2的解析式;
(2)在同一直角坐标系中,画出函数y1和y2的图象草图;
(3)借助图象回答:当自变量x在什么范围内取值时,对于x的同一个值,都有y1
22. 工厂有一批长3dm、宽2dm的矩形铁片,为了利用这批材料,在每一块上裁下一个最大的圆铁片⊙O1之后(如图所示),再在剩余铁片上裁下一个充分大的圆铁片⊙O2.
(1)求⊙O1、⊙O2的半径r1、r2的长;
(2)能否在剩余的铁片上再裁出一个与⊙O2 同样大小的圆铁片?为什么?
五、解答题(本题共22分, 第23、24题各7分,第25题8分)
23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点M、N,在AC的延长线上取点P,使∠CBP= ∠A.
(1)判断直线BP与⊙O的位置关系,并证明你的结论;
(2)若⊙O的半径为1,tan∠CBP=0.5,求BC和BP的长.
24. 已知:如图,正方形纸片ABCD的边长是4,点M、N分别在两边AB和CD上(其中点N不与点C重合),沿直线MN折叠该纸片,点B恰好落在AD边上点E处.
(1)设AE=x,四边形AMND的面积为 S,求 S关于x 的函数解析式,并指明该函数的定义域;
(2)当AM为何值时,四边形AMND的面积最大?最大值是多少?
(3)点M能是AB边上任意一点吗?请求出AM的取值范围.
25. 在直角坐标系xOy 中,已知某二次函数的图象经过A(-4,0)、B(0,-3),与x轴的正半轴相交于点C,若△AOB∽△BOC(相似比不为1).
(1)求这个二次函数的解析式;
(2)求△ABC的外接圆半径r;
(3)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与线段AB交于N点,且以点O、A、N为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.
九年级数学同步练习题
一、判断题
1、在比例中,如果两内项互为倒数,那么两外项也互为倒数。 ( )
2、已知a比b多20%,那么a:b=6:5。 ( )
3、有2,4,8,16四个数,它们都是合数。 ( )
4、长方形和正方形都有4条对称轴。 ( )
5、一个真分数的分子和分母加一个相同的数,其值变大。 ( )
二、填空题
1、一个数由5个千万、4个十万、8个千、3个百和7个十组成,这个数写作( ),改写用“万”作单位的数是( )万,四舍五入到万位约为( )万。
2、480平方分米=( )平方米 2.6升=( )升( )毫升
3、最小质数占最大的两位偶数的( )。
4、5.4:1.6的比值是( ),化成最简整数比是( )。
5、李毛在1:8000000的地图上量得北京到南京的距离为15厘米,两地实际距离约为( )千米。
6、在0.8383...,83%,0.8333...中,最大的数是( ),最小的数是( )。
7、用500粒种子做发芽试验,有10粒没有发芽,发芽率是( )%。
8、甲、乙两个圆柱体的体积相等,底面面积之比为3:4,则这两个圆柱体的高的比是( )。
9、( )比200多20%,20比( )少20%。
10、把4个棱长为2分米的正方体拼成长方体,拼成的长方体的表面积可能是( )平方米,也可能是( )平方分米。
三、选择题
1、如果a×b=0,那么( )。
A、a一定为0 B、b一定为0 C、a、b一定均为0 D、a、b中一定至少有一个为0
2、下列各数中不能化成有限小数的分数是( )。
A、9/20 B、5/12 C、9/12
3、下列各数精确到0.01的是( )。
A、0.6925≈0.693 B、8.029≈8.0 C、4.1974≈4.20
4、把两个棱长都是2分米的正方体拼成一个长方体,这个长方体的表面积比两个正方体的表面积的和减少了( )平方分米。
A、4 B、8 C、16
5、两根同样长的.铁丝,从第一根上截去它的3/5,从另一根上截去3/8米,余下部分( )。
A、第一根长 B、第二根长 C、长度相等 D、无法比较
四、计算题
1、直接写出得数。
225+475= 19.3-2.7= 1/2+3/4= 1.75÷1.75=
3/4×2/3= 5.1÷0.01= 4/7×5.6= 8.1-6.5=
4.1+1÷2= (3.5%-0.035)÷2.25=
2、简算
(1) 1 + 1 + 1 + 1 +...+ 1 (2)382+498×381
1×2 2×3 3×4 4×5 199×200 382×498-116
(3)57.5-14.25-15.75 (4)1/7×102.31+40又6/7×102.31
3、脱式计算
6760÷13+17×25 4.82-5.2÷0.8×0.6
(1/3+2.5)÷(2+3 2/3) (5/6×10.68+8.52×5/6)÷1 3/5
4、解方程
x:1.2=3:4 3.2x-4×3=52 8(x-2)=2(x+7)
5、列式计算
(1)1.3与4/5的和除以3与2/3的差,商是多少?
(2)在一个除法算式里,商和余数都是5,并且被除数、除数、商和余数的和是81。被除数、除数各是什么数?
(3)某数的4/9比1.2的1又1/4倍多2.1,这个数是多少?
五、应用题
1、某工程队修一条长1600米的公路,已经修好这条公路的75%,还剩多少米没有修?
2、某无线电厂三月份生产电视机782台,四月份生产786台,五月份生产824台,该厂平均日产电视机多少台?
3、华川机器厂今年1——4月份工业产值分别是25万元、30万元、40万元、50万元。(1)绘制折线统计图。(2)算出最高产值比最低产值增长百分之几?
4、一份稿件,甲单独打印需要10天完成,乙单独打印5天只能完成这份稿件的1/3。现在两人合作,几天可打印这份稿件的50%?
5、一列客车和一列货车同时从甲、乙两个城市相对开出,已知客车每小时行驶55千米,客车速度与货车速度的比是11:9,两车开出后5小时相遇。甲、乙两城市间的铁路长多少千米?
6、已知慢车的速度是快车的5/6,两车从甲、乙两站同时相向而行,在离中点4千米的地方相遇。求甲、乙两站的距离是多少千米。
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学
高中政治课优秀教案最新模板
关于高中物理备课组教学计划
人教版八年级上学期生物教学工作总结五篇
六年级数学考试反思范文
六年级数学考试反思范文
人教四年级数学寒假作业大全
小学四年级数学教学计划
新版北师大版二年级下册数学教案最新模板
最新一年级数学跷跷板教案模板
二年级下册数学统计教案文案
齐齐哈尔工程学院在新疆高考招生计划人数专业代码(2024参考)
宁夏工商职业技术学院在河南高考招生计划人数专业代码(2024参考)
河北高考排名184970左右排位历史可以上哪些大学,具体能上什么大学
湖北高考排名174600左右排位物理可以上哪些大学,具体能上什么大学
考福州外语外贸学院要多少分宁夏考生 附2024录取名次和最低分
湖南师范大学在云南高考招生计划人数专业代码(2024参考)
广东高考排名247430左右排位物理可以上哪些大学,具体能上什么大学
陕西青年职业学院在宁夏高考历年录戎数线(2024届参考)
安徽文达信息工程学院的审计学专业排名怎么样 附历年录戎数线
安徽高考排名263910左右排位理科可以上哪些大学,具体能上什么大学
考安顺学院要多少分广东考生 附2024录取名次和最低分
广东高考排名94120左右排位物理可以上哪些大学,具体能上什么大学
四川高考排名6710左右排位理科可以上哪些大学,具体能上什么大学
考洛阳科技职业学院要多少分甘肃考生 附2024录取名次和最低分
福建高考排名46830左右排位物理可以上哪些大学,具体能上什么大学
重庆机电职业技术大学的数控技术专业排名怎么样 附历年录戎数线
郑州升达经贸管理学院和辽宁工业大学哪个好 附对比和区别排名
赣州职业技术学院和扬州工业职业技术学院哪个好 附对比和区别排名
江西外语外贸职业学院在内蒙古高考历年录戎数线(2024届参考)
四川高考排名14260左右排位理科可以上哪些大学,具体能上什么大学
最新二年级数学奥运开幕教案例文
数学课程教学计划范文
数学功课新学期教学计划范文
最新三年级数学下册第二单元教案范文
三年级下册数学第四单元教案范文
小学数学教学反思工作总结五篇
护士节是为了纪念谁
数学教学工作总结通用7篇
北师大版一年级数学上册课后反思教案范文五篇
小学考试必背数学公式大全
最新数学八年级的教学经验总结五篇
小学五年级数学期中教学工作总结
小学四年级上册数学教学计划
高考数学重点知识点必备
六年级数学考前总复习测试卷整理