九年级上册数学同步练习附答案归纳

李盛老师

九年级数学检测题带答案

一、选择题(每小题3分,共30分)

1.下列关于 的方程:① ;② ;③ ;

④( ) ;⑤ = -1,其中一元二次方程的个数是( )

A.1 B.2 C.3 D.4

2.用配方法解一元二次方程x2-4x=5时,此方程可变形为( )

A.(x+2)2=1 B.(x-2)2=1

C.(x+2)2=9 D.(x-2)2=9

3.(2015?浙江温州中考)若关于 的一元二次方程 有两个相等实数根,则 的值是(  )

A. -1 B. 1 C. -4 D. 4

4.若 则 的值为( )

A.0 B.-6 C.6 D.以上都不对

5. 目前我国已建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是( )

A.438 =389 B.389 =438

C.389(1+2x)=438 D.438(1+2x)=389

6.根据下列表格对应值:

3.24 3.25 3.26

-0.02 0.01 0.03

判断关于 的方程 的一个解 的范围是( )

A. <3.24 B.3.24< <3.25

C.3.25< <3.26 D.3.25< <3.28

7.(2015?四川成都中考)关于x的一元二次方程k +2x-1=0有两个不相等的实数根,则k的取值范围是(  )

A.k>-1 B.k≥-1 C.k≠0 D.k>-1且k≠0

8.已知 是一元二次方程 的两个根,则 的值为( )

A. B.2 C. D.

9. 关于x的方程 的根的情况描述正确的是( )

A . k 为任何实数,方程都没有实数根

B . k 为任何实数,方程都有两个不相等的实数根

C . k 为任何实数,方程都有两个相等的实数根

D. 根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种

10. (2015?兰州中考) 股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是(  )

A. = B. = C.1+2x= D.1+2x=

二、填空题(每小题3分,共24分)

11.(2015?兰州中考)若一元二次方程a -bx-2 015=0有一根为x=-1,则a+b= .

12. (2015?贵州遵义中考)关于x的一元二次方程 3x+b=0有两个不相等的实数根,则b的取值范围是 .

13.若( 是关于 的一元二次方程,则 的值是________.

14.(2015?上海中考)如果关于x的一元二次方程x2+4x-m=0没有实数根,那么m的取值范围是________.

15.如果关于x的一元二次方程x2-6x+c=0(c是常数)没有实数根,那么c的取值范围是 .

16.设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n= .

17.若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程 .

18. 一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为 .

三、解答题(共66分)

19.(8分)已知关于 的方程 .

(1) 为何值时,此方程是一元一次方程?

(2) 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.

20.(8分)选择适当方法解下列方程:

(1) (用配方法);

(2) ;

(3) ;

(4) .

21.(8分)在长为 ,宽为 的矩形的四个角上分别截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.

22.(8分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个;第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1 250元,问:第二周每个旅游纪念品的销售价格为多少元?

23.(8分)(2015?江苏连云港)在某市组织的大型商业演出活动中,对团购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6 000元购买的门票张数,现在只花费了4 800元.

(1)求每张门票的原定票价;

(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.

24.(8分)关于 的方程 有两个不相等的实数根.

(1)求 的取值范围.

(2)是否存在实数 ,使方程的两个实数根的倒数和等于0?若存在,求出 的'值;若不存在,说明理由.

25.(8分)已知下列n(n为正整数)个关于x的一元二次方程:

(1)请解上述一元二次方程;

(2)请你指出这n个方程的根具有什么共同特点,写出一条即可.

26.(10分)某市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.

(1)求平均每次下调的百分率.

(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?

参考答案

1.B 解析:方程①是否为一元二次方程与 的取值有关;

方程②经过整理后可得 ,是一元二次方程;

方程③是分式方程;

方程④的二次项系数经过配方后可化为 ,不论 取何值,其值都不为0,所以方程④是一元二次方程;

方程⑤不是整式方程,也可排除.

故一元二次方程仅有2个.

2. D 解析:由x2?4x?5得x2?4x+22?5+22,即(x?2)2=9.

3.B 解析:由题意得,一元二次方程4 -4x+c=0的根的判别式等于0,即 = =0,整理得,16-16c=0,解得c=1.

4.B 解析:∵ ,∴ .

∵ ∴ 且 ,∴ , ,∴ ,故选B.

5.B 解析:由每半年发放的资助金额的平均增长率为x,

得去年下半年发放给每个经济困难学生389(1+x)元,

今年上半年发放给每个经济困难学生389(1+x)(1+x)?389 (元),

根据关键语句“今年上半年发放了438元”,可得方程389 ?438.

点拨:关于增长率问题一般列方程a(1+x)n?b,其中a为基础数据,b为增长后的数据,n为增长次数,x为增长率.

6.B 解析:当3.24< <3.25时, 的值由负连续变化到正,说明在3.24<

<3.25范围内一定有一个 的值,使 ,即是方程 的一

个解.故选B.

7. D 解析:因为所给方程是一元二次方程,所以k≠0.又方程有两个不相等的实数根,所以Δ>0,即Δ=22-4×(-1)k>0,解得k>-1,所以k>-1且k≠0.

8. D 解析:因为 是一元二次方程 的两个根,则 ,所以 ,故选D.

9. B 解析:根据方程的判别式得,

∵ ∴ 故选B.

10. B 解析:设此股票原价为a元,跌停后的价格为0.9a元.如果每天的平均增长率为x,经过两天涨价后的价格为0.9a ,于是可得方程0.9a =a,即x满足的方程是 = .

11. 2 015 解析:把x= -1代入方程中得到a+b-2 015=0,即a+b=2 015.

12. b< 解析:因为一元二次方程 有两个不相等的实数根,所以 ,解得b< .

13. 解析:由题意得 解得 或 .

14. 解析:因为关于x的一元二次方程x2+4x-m=0没有实数根,所以b2 4ac=42 4×1×( m) <0,解得 .

15. c?9 解析:由(?6)2?4×1×c?0,得c?9.

16.4 解析: ∵ m,n是一元二次方程x2+3x?7?0的两个根,

∴ m+n??3,m2+3m?7=0,∴ m2+4m+n? m2+3m+m+n ? 7+m+n?7?3?4.

17. x2-5x+6?0(答案不唯一) 解析:设Rt△ABC的两条直角边的长分别为a,b.因为 S△ABC?3,所以ab?6.又因为一元二次方程的两根为a,b(a>0,b>0),所以符合条件的一元二次方程为(x-2)(x-3)?0,(x-1)(x-6)?0等,即x2-5x+6?0或x2-7x+6?0等.

18. 25或36 解析:设这个两位数的十位数字为 ,则个位数字为( ).

依题意得: ,解得 ,∴ 这个两位数为25或36.

19. 分析:本题是含有字母系数的方程问题.根据一元一次方程和一元二次方程的定义,分别进行讨论求解.

解:(1)由题意得, 即当 时,

方程 是一元一次方程.

(2)由题意得,当 ,即 时,方程 是一元二次方程.此方程的二次项系数是 、一次项系数是 、常数项是 .

九年级上册数学试卷及答案

一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)

1. 已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点P

A. 在⊙O外 B. 在⊙O上 C. 在⊙O内 D. 不能确定

2. 已知△ABC中,∠C=90°,AC=6,BC=8, 则cosB的值是

A.0.6 B.0.75 C.0.8 D.

3.如图,△ABC中,点 M、N分别在两边AB、AC上,MN‖BC,则下列比例式中,不正确的是

A . B .

C. D.

4. 下列图形中,既是中心对称图形又是轴对称图形的是

A. B. C. D.

5. 已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2= cm,则⊙O1和⊙O2的位置关系是

A.外离 B.外切 C.内切 D.相交

6. 某二次函数y=ax2+bx+c 的图象如图所示,则下列结论正确的是

A. a>0, b>0, c>0 B. a>0, b>0, c<0

C. a>0, b<0, c>0 D. a>0, b<0, c<0

7.下列命题中,正确的是

A.平面上三个点确定一个圆 B.等弧所对的圆周角相等

C.平分弦的直径垂直于这条弦 D.与某圆一条半径垂直的直线是该圆的切线

8. 把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是

A.y=-(x+3)2-2 B.y=-(x+1)2-1

C.y=-x2+x-5 D.前三个答案都不正确

二、填空题(本题共16分, 每小题4分)

9.已知两个相似三角形面积的比是2∶1,则它们周长的比 _____ .

10.在反比例函数y= 中,当x>0时,y 随 x的增大而增大,则k 的取值范围是_________.

11. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________.

12.已知⊙O的直径AB为6cm,弦CD与AB相交,夹角为30°,交点M恰好为AB的一个三等分点,则CD的长为 _________ cm.

三、解答题(本题共30分, 每小题5分)

13. 计算:cos245°-2tan45°+tan30°- sin60°.

14. 已知正方形MNPQ内接于△ABC(如图所示),若△ABC的面积为9cm2,BC=6cm,求该正方形的边长.

15. 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB的长为12米,调整后的楼梯所占地面CD有多长?(结果精确到0.1米;参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)

16.已知:△ABC中,∠A是锐角,b、c分别是∠B、∠C的对边.

求证:△ABC的面积S△ABC= bcsinA.

17. 如图,△ABC内接于⊙O,弦AC交直径BD于点E,AG⊥BD于点G,延长AG交BC于点F. 求证:AB2=BF?BC.

18. 已知二次函数 y=ax2-x+ 的图象经过点(-3, 1).

(1)求 a 的'值;

(2)判断此函数的图象与x轴是否相交?如果相交,请求出交点坐标;

(3)画出这个函数的图象.(不要求列对应数值表,但要求尽可能画准确)

四、解答题(本题共20分, 每小题5分)

19. 如图,在由小正方形组成的12×10的网格中,点O、M和四边形ABCD的顶点都在格点上.

(1)画出与四边形ABCD关于直线CD对称的图形;

(2)平移四边形ABCD,使其顶点B与点M重合,画出平移后的图形;

(3)把四边形ABCD绕点O逆时针旋转90°,画出旋转后的图形.

20. 口袋里有 5枚除颜色外都相同的棋子,其中 3枚是红色的,其余为黑色.

(1)从口袋中随机摸出一

一枚棋子,摸到黑色棋子的概率是_______ ;

(2)从口袋中一次摸出两枚棋子,求颜色不同的概率.(需写出“列表”或画“树状图”的过程)

21. 已知函数y1=- x2 和反比例函数y2的图象有一个交点是 A( ,-1).

(1)求函数y2的解析式;

(2)在同一直角坐标系中,画出函数y1和y2的图象草图;

(3)借助图象回答:当自变量x在什么范围内取值时,对于x的同一个值,都有y1

22. 工厂有一批长3dm、宽2dm的矩形铁片,为了利用这批材料,在每一块上裁下一个最大的圆铁片⊙O1之后(如图所示),再在剩余铁片上裁下一个充分大的圆铁片⊙O2.

(1)求⊙O1、⊙O2的半径r1、r2的长;

(2)能否在剩余的铁片上再裁出一个与⊙O2 同样大小的圆铁片?为什么?

五、解答题(本题共22分, 第23、24题各7分,第25题8分)

23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点M、N,在AC的延长线上取点P,使∠CBP= ∠A.

(1)判断直线BP与⊙O的位置关系,并证明你的结论;

(2)若⊙O的半径为1,tan∠CBP=0.5,求BC和BP的长.

24. 已知:如图,正方形纸片ABCD的边长是4,点M、N分别在两边AB和CD上(其中点N不与点C重合),沿直线MN折叠该纸片,点B恰好落在AD边上点E处.

(1)设AE=x,四边形AMND的面积为 S,求 S关于x 的函数解析式,并指明该函数的定义域;

(2)当AM为何值时,四边形AMND的面积最大?最大值是多少?

(3)点M能是AB边上任意一点吗?请求出AM的取值范围.

25. 在直角坐标系xOy 中,已知某二次函数的图象经过A(-4,0)、B(0,-3),与x轴的正半轴相交于点C,若△AOB∽△BOC(相似比不为1).

(1)求这个二次函数的解析式;

(2)求△ABC的外接圆半径r;

(3)在线段AC上是否存在点M(m,0),使得以线段BM为直径的圆与线段AB交于N点,且以点O、A、N为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.

一、 ACCB DABB

二、 9. :1  10. k< -1 11. ,   12.

三、13. 原式= -2+ - ×

= -2 + - ……………………………………4分

= -3+ ……………………………………………………5分

14. 作AE⊥BC于E,交MQ于F.

由题意, BC×AE=9cm2 , BC=6cm.

∴AE=3cm. ……………………………1分

设MQ= xcm,

∵MQ‖BC,∴△AMQ∽△ABC. ……………………2分

∴ . ……………………3分

又∵EF=MN=MQ,∴AF=3-x.

∴ . ……………………………………4分

解得 x=2.

答:正方形的边长是2cm. …………………………5分

15. 由题意,在Rt△ABC中,AC= AB=6(米), …………………1分

又∵在Rt△ACD中,∠D=25°, =tan∠D, ……………………………3分

∴CD= ≈ ≈12.8(米).

答:调整后的楼梯所占地面CD长约为12.8米. ……………………5分

16. 证明:作CD⊥AB于D,则S△ABC= AB×CD. ………………2分

∵ 不论点D落在射线AB的什么位置,

在Rt△ACD中,都有CD=ACsinA. …………………4分

又∵AC=b,AB=c,

∴ S△ABC= AB×A

九年级数学练习题及答案

A级 基础题

1.(201x年福建漳州)用下列一种多边形不能铺满地面的是(  )

A.正方形 B.正十边形 C.正六边形 D.等边三角形

2.(201x年湖南长沙)下列多边形中,内角和与外角和相等的`是(  )

A.四边形 B.五边形 C.六边形 D.八边形

3.(201x年海南)在?ABCD中,AC与BD相交于点O,则下列结论不一定成立的是(  )

A.BO=DO B.CD=AB C.∠BAD=∠BCD D.AC=BD

图439    图4310    图4311    图4312    图4313

4.(201x年黑龙江哈尔滨)如图4310,在?ABCD中,AD=2AB,CE平分∠BCD,并交AD边于点E,且AE=3,则AB的长为(  )

A.4 B.3 C.52 D.2

5.若以A(-0.5,0),B(2,0),C(0,1)三点为顶点画平行四边形,则第四个顶点不可能在(  )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

6.(201x年山东烟台),?ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为____________.

7.(201x年江西),?ABCD与?DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为__________.

8.(201x年福建泉州)如图4313,顺次连接四边形 ABCD四边的中点E,F,G,H,则四边形 EFGH 的形状一定是__________.

9.(2012年四川德阳)已知一个多边形的内角和是外角和的32,则这个多边形的边数是________.

10.(201x年四川南充)在平行四边形ABCD中,对角线AC,BD交于点O,经过点O的直线交AB于E,交CD于F.求证:OE=OF.

11.(201x年福建漳州)在?ABCD中,E,F是对角线BD上两点,且BE=DF.

(1)图中共有______对全等三角形;

(2)请写出其中一对全等三角形:________≌__________,并加以证明.

B级 中等题

12.(201x年广东广州)如图4316,已知四边形ABCD是平行四边形,把△ABD沿对角线BD翻折180°得到△A′BD.

(1)利用尺规作出△A′BD(要求保留作图痕迹,不写作法);

(2)设DA′与BC交于点E,求证:△BA′E≌△DCE.

13.(2012年辽宁沈阳)在?ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.

(1)求证:△AEM≌△CFN;

(2)求证:四边形BMDN是平行四边形.

C级 拔尖题

14.(1)如图4318(1),?ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.

(2)如图4318(2),将?ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.

参考答案:

1.B 2.A 3.D 4.B 5.C 6.15 7.25°

8.平行四边形 9.5

10.证明:∵四边形ABCD是平行四边形,

∴OA=OC,AB‖CD.∴∠OAE=∠OCF.

∵∠AOE=∠COF,∴△OAE≌△OCF(ASA).

∴OE=OF.

11.解:(1)3

(2)①△ABE≌△CDF.

证明:在?ABCD中,AB‖CD,AB=CD,

∴∠ABE=∠CDF.

又∵BE=DF,∴△ABE≌△CDF(SAS).

②△ADE≌△CBF.

证明:在?ABCD中,AD‖BC,AD=BC,

∴∠ADE=∠CBF,∵BE=DF,

∴BD-BE=BD-DF,即DE=BF.

∴△ADE≌△CBF(SAS).

③△ABD≌△CDB.

证明:在?ABCD中,AB=CD,AD=BC,

又∵BD=DB,∴△ABD≌△CDB(SSS).

(任选其中一对进行证明即可)

12.解:(1)略

(2)∵四边形ABCD是平行四边形,

∴AB=CD,∠BAD=∠C,

由折叠性质,可得∠A′=∠A,A′B=AB,

设A′D与BC交于点E,∴∠A′=∠C,A′B=CD,

在△BA′E和△DCE中,

∠A′=∠C,∠BEA′=∠DEC,BA′=DC,

∴△BA′E≌△DCE(AAS).

13.证明:(1)∵四边形ABCD是平行四边形,

∴∠DAB=∠BCD.∴∠EAM=∠FCN.

又∵AD‖BC,∴∠E=∠F.

又∵AE=CF,

∴△AEM≌△CFN(ASA).

(2)∵四边形ABCD是平行四边形,

∴AB‖CD,AB=CD.

又由(1),得AM=CN,∴BM=DN.

又∵BM‖DN∴四边形BMDN是平行四边形.

14.证明:(1)∵四边形ABCD是平行四边形,

∴AD‖BC,OA=OC.∴∠1=∠2.

又∵∠3=∠4,

∴△AOE≌△COF(ASA).∴AE=CF.

(2)∵四边形ABCD是平行四边形,

∴∠A=∠C,∠B=∠D.

由(1),得AE=CF.

由折叠的性质,得AE=A1E,∠A1=∠A,∠B1=∠B,

∴A1E=CF,∠A1=∠C,∠B1=∠D.

又∵∠1=∠2,∴∠3=∠4.

∵∠5=∠3,∠4=∠6,∴∠5=∠6.

在△A1IE与△CGF中,

∠A1=∠C,∠5=∠6,A1E=CF,

∴△A1IE≌△CGF(AAS).∴EI=FG.