初中数学总结归纳知识点必看

刘莉莉老师

初三数学知识点复习归纳

1 圆、圆心、半径、直径、圆弧、弦、半圆的定义

2 垂直于弦的直径

圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;

垂直于弦的直径平分弦,并且平方弦所对的两条弧;

平分弦的直径垂直弦,并且平分弦所对的两条弧。

3 弧、弦、圆心角

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

4 圆周角

在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;

半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。

5 点和圆的位置关系

点在圆外

点在圆上 d=r

点在圆内 d

定理:不在同一条直线上的三个点确定一个圆。

三角形的外接圆:经过三角形的三个顶点的圆,外接圆的圆心是三角形的三条边的垂直平分线的交点,叫做三角形的外心。

6直线和圆的位置关系

相交 d

相切 d=r

相离 d>r

切线的性质定理:圆的切线垂直于过切点的半径;

切线的判定定理:经过圆的外端并且垂直于这条半径的直线是圆的切线;

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。

三角形的内切圆:和三角形各边都相切的圆为它的内切圆,圆心是三角形的三条角平分线的交点,为三角形的内心。

7 圆和圆的位置关系

外离 d>R+r

外切 d=R+r

相交 R-r

内切 d=R-r

内含 d

8 正多边形和圆

正多边形的中心:外接圆的圆心

正多边形的半径:外接圆的半径

正多边形的中心角:没边所对的圆心角

正多边形的边心距:中心到一边的距离

初一下册数学知识点总结北师大版

多项式除以单项式

一、单项式

1、都是数字与字母的乘积的代数式叫做单项式。

2、单项式的数字因数叫做单项式的系数。

3、单项式中所有字母的指数和叫做单项式的次数。

4、单独一个数或一个字母也是单项式。

5、只含有字母因式的单项式的系数是1或―1。

6、单独的一个数字是单项式,它的系数是它本身。

7、单独的一个非零常数的次数是0。

8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。

9、单项式的系数包括它前面的符号。

10、单项式的系数是带分数时,应化成假分数。

11、单项式的系数是1或―1时,通常省略数字“1”。

12、单项式的次数仅与字母有关,与单项式的系数无关。

二、多项式

1、几个单项式的和叫做多项式。

2、多项式中的每一个单项式叫做多项式的项。

3、多项式中不含字母的项叫做常数项。

4、一个多项式有几项,就叫做几项式。

5、多项式的每一项都包括项前面的符号。

6、多项式没有系数的概念,但有次数的概念。

7、多项式中次数的项的次数,叫做这个多项式的次数。

三、整式

1、单项式和多项式统称为整式。

2、单项式或多项式都是整式。

3、整式不一定是单项式。

4、整式不一定是多项式。

5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。

四、整式的加减

1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。

3、几个整式相加减的一般步骤:

(1)列出代数式:用括号把每个整式括起来,再用加减号连接。

(2)按去括号法则去括号。

(3)合并同类项。

4、代数式求值的一般步骤:

(1)代数式化简。

(2)代入计算

(3)对于某些特殊的代数式,可采用“整体代入”进行计算。

五、同底数幂的乘法

1、n个相同因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。

2、底数相同的幂叫做同底数幂。

3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。

4、此法则也可以逆用,即:am+n=am﹒an。

5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。

六、幂的乘方

1、幂的乘方是指几个相同的幂相乘。(am)n表示n个am相乘。

2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n=amn。

3、此法则也可以逆用,即:amn=(am)n=(an)m。

初中数学知识点总结-矩形

1、矩形的概念

有一个角是直角的平行四边形叫做矩形。

2、矩形的性质

(1)具有平行四边形的一切性质(2)矩形的四个角都是直角

(3)矩形的对角线相等(4)矩形是轴对称图形

3、矩形的判定

(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形

(3)定理2:对角线相等的平行四边形是矩形

4、矩形的面积S矩形=长×宽=ab