一、高中数列基本公式:
1、一般数列的通项an与前n项和Sn的关系:an=
2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn=
Sn=
Sn=
当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。
4、等比数列的通项公式: an= a1 qn-1 an= ak qn-k
(其中a1为首项、ak为已知的第k项,an≠0)
5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);
当q≠1时,Sn=
Sn=
三、高中数学中有关等差、等比数列的结论
1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则
3、等比数列{an}中,若m+n=p+q,则
4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列
{an
bn}、
、
仍为等比数列。
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d
10、三个数成等比数列的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)
11、{an}为等差数列,则
(c>0)是等比数列。
12、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c
1) 是等差数列。
13. 在等差数列
中:
(1)若项数为
,则
(2)若数为
则,
,
14. 在等比数列
中:
(1) 若项数为
,则
(2)若数为
则,
高考数学备考:求数列通项公式的常用方法
求数列通项公式常用以下几种方法:
一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。
例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。
解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。
二、已知数列的前n项和,用公式
S1 (n=1)
Sn-Sn-1 (n2)
例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5
(A) 9 (B) 8 (C) 7 (D) 6
解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8 ∴k=8 选 (B)
此类题在解时要注意考虑n=1的情况。
三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。
例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。
解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-} 是以-为首项,-1为公差的等差数列,∴-= -,Sn= -,
再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以,
- (n=1)
- (n2)
高三数学练习题及答案:数列
一、选择题:本大题共12小题,每小题5分,共60分.
1.在等差数列{an}中,若a1+a2+a12+a13=24,则a7为()
A.6B.7C.8D.9
解析:∵a1+a2+a12+a13=4a7=24,∴a7=6.
答案:A
2.若等差数列{an}的前n项和为Sn,且满足S33-S22=1,则数列{an}的公差是()
A.12B.1C.2D.3
解析:由Sn=na1+n(n-1)2d,得S3=3a1+3d,S2=2a1+d,代入S33-S22=1,得d=2,故选C.
答案:C
3.已知数列a1=1,a2=5,an+2=an+1-an(n∈N.),则a2011等于()
A.1B.-4C.4D.5
解析:由已知,得a1=1,a2=5,a3=4,a4=-1,a5=-5,a6=-4,a7=1,a8=5,…
故{an}是以6为周期的数列,
∴a2011=a6×335+1=a1=1.
答案:A
4.设{an}是等差数列,Sn是其前n项和,且S5
A.d<0B.a7=0
C.S9>S5D.S6与S7均为Sn的值
解析:∵S5
又S7>S8,∴a8<0.
假设S9>S5,则a6+a7+a8+a9>0,即2(a7+a8)>0.
∵a7=0,a8<0,∴a7+a8<0.假设不成立,故S9
答案:C
5.设数列{an}是等比数列,其前n项和为Sn,若S3=3a3,则公比q的值为()
A.-12B.12
C.1或-12D.-2或12[
解析:设首项为a1,公比为q,
则当q=1时,S3=3a1=3a3,适合题意.
当q≠1时,a1(1-q3)1-q=3?a1q2,
∴1-q3=3q2-3q3,即1+q+q2=3q2,2q2-q-1=0,
解得q=1(舍去),或q=-12.
综上,q=1,或q=-12.
答案:C
6.若数列{an}的通项公式an=5?252n-2-4?25n-1,数列{an}的项为第x项,最小项为第y项,则x+y等于()
A.3B.4C.5D.6
解析:an=5?252n-2-4?25n-1=5?25n-1-252-45,
∴n=2时,an最小;n=1时,an.
此时x=1,y=2,∴x+y=3.
答案:A
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学
关于初中生物高效课堂教学计划五篇
思想政治学科教学内容设计计划
初二历史学期末教学总结
幼儿园儿童数学学习方法总结大全
幼儿园儿童数学学习方法总结大全
小学二年级数学课教学反思范文五篇
初级学生数学期中考的总结反思模板
新版北师大版二年级下册数学教案最新模板
最新一年级数学跷跷板教案模板
二年级下册数学统计教案文案
齐齐哈尔工程学院在新疆高考招生计划人数专业代码(2024参考)
宁夏工商职业技术学院在河南高考招生计划人数专业代码(2024参考)
河北高考排名184970左右排位历史可以上哪些大学,具体能上什么大学
湖北高考排名174600左右排位物理可以上哪些大学,具体能上什么大学
考福州外语外贸学院要多少分宁夏考生 附2024录取名次和最低分
湖南师范大学在云南高考招生计划人数专业代码(2024参考)
广东高考排名247430左右排位物理可以上哪些大学,具体能上什么大学
陕西青年职业学院在宁夏高考历年录戎数线(2024届参考)
安徽文达信息工程学院的审计学专业排名怎么样 附历年录戎数线
安徽高考排名263910左右排位理科可以上哪些大学,具体能上什么大学
考安顺学院要多少分广东考生 附2024录取名次和最低分
广东高考排名94120左右排位物理可以上哪些大学,具体能上什么大学
四川高考排名6710左右排位理科可以上哪些大学,具体能上什么大学
考洛阳科技职业学院要多少分甘肃考生 附2024录取名次和最低分
福建高考排名46830左右排位物理可以上哪些大学,具体能上什么大学
重庆机电职业技术大学的数控技术专业排名怎么样 附历年录戎数线
郑州升达经贸管理学院和辽宁工业大学哪个好 附对比和区别排名
赣州职业技术学院和扬州工业职业技术学院哪个好 附对比和区别排名
江西外语外贸职业学院在内蒙古高考历年录戎数线(2024届参考)
四川高考排名14260左右排位理科可以上哪些大学,具体能上什么大学
最新二年级数学奥运开幕教案例文
数学课程教学计划范文
数学功课新学期教学计划范文
最新三年级数学下册第二单元教案范文
三年级下册数学第四单元教案范文
七年级数学课程教学工作总结
人教版九年级数学上册教学计划五篇
新学期高中数学课程教学计划五篇
六年级数学学期教学工作总结五篇
四年级上学期数学教学工作总结
数学教研全新教学计划
北师大版一年级上册数学上下教案最新模板
七年级数学寒假作业答案一览
新人教版五年级的数学上册教学总结范文
数学教育教学成绩总结