高二数学寒假作业必备练习

王明刚老师

数学寒假作业试卷练习题

一、选择题(共12小题,每小题5分,每小题四个选项中只有一项符合要求。)

1.的值为

A.B.C.D.

2.已知集合,则=

A.B.C.D.

3.若,其中a、b∈R,i是虚数单位,则

A.B.C.D.

4.命题r:如果则且.若命题r的否命题为p,命题r的否定为q,则

A.P真q假B.P假q真C.p,q都真D.p,q都假

5.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是

A.B.C.D.

6.设,,,(e是自然对数的底数),则

A.B.C.D.

7.将名学生分别安排到甲、乙,丙三地参加社会实践活动,每个地方至少安排一名学生参加,则不同的安排方案共有

A.36种B.24种C.18种D.12种

8.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是

A.B.C.D.

9.设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为

A.B.C.D.

10.已知样本9,10,11,x,y的平均数是10,标准差是,则的值为

A.100B.98C.96D.94

11.现有四个函数:①;②;③;④的图象(部分)如下:

则按照从左到右图象对应的函数序号安排正确的一组是

A.①④②③B.①④③②C.④①②③D.③④②①

12.若函数在R上可导,且满足,则

ABCD

第II卷(非选择题,共90分)

二、填空题(每小题5分)

13.已知偶函数的定义域为R,满足,若时,,则

14.设a=则二项式的常数项是

15.下面给出的命题中:

①已知则与的关系是

②已知服从正态分布,且,则

③将函数的图象向右平移个单位,得到函数的图象。

其中是真命题的有_____________。(填序号)

16.函数是定义在R上的奇函数,当时,,则在上所有零点之和为

三、解答题

17.(本题满分10分)

已知全集U=R,集合,函数的定义域为集合B.

(1)若时,求集合;

(2)命题P:,命题q:,若q是p的必要条件,求实数a的取值范围。

18.(本小题满分12分)

已知函数

(1).求的周期和单调递增区间;

(2).若关于x的方程在上有解,求实数m的取值范围.

19.(本小题满分12分)

已知曲线C的极坐标方程为.

(1)若直线过原点,且被曲线C截得弦长最短,求此时直线的标准形式的参数方程;

(2)是曲线C上的动点,求的值。

20.(本小题满分12分)

为了了解青少年视力情况,某市从高考体检中随机抽取16名学生的视力进行调查,经医生用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:

(1)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;

>(2)以这16人的样本数据来估计该市所有参加高考学生的的总体数据,若从该市参加高考的学生中任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望.

21.(本小题满分12分)

已知函数和的定义域都是[2,4].

(1)若,求的最小值;

(2)若在其定义域上有解,求的取值范围;

(3)若,求证。

22.(本小题满分12分)

已知函数f(x)=-ax(a∈R,e为自然对数的底数).

(1)讨论函数f(x)的单调性;

(2)若a=1,函数在区间(0,+)上为增函数,求整数m的值.

高二数学寒假作业检测题及答案

1.在5的二项展开式中,x的系数为()

A.10B.-10C.40D.-40

解析:选DTr+1=C(2x2)5-rr=(-1)r·25-r·C·x10-3r,

令10-3r=1,得r=3.所以x的系数为(-1)3·25-3·C=-40.

2.在(1+)2-(1+)4的展开式中,x的系数等于()

A.3B.-3C.4D.-4

解析:选B因为(1+)2的展开式中x的系数为1,(1+)4的展开式中x的系数为C=4,所以在(1+)2-(1+)4的展开式中,x的系数等于-3.

3.(2013·全国高考)(1+x)8(1+y)4的展开式中x2y2的系数是()

A.56B.84C.112D.168

解析:选D(1+x)8展开式中x2的系数是C,(1+y)4的展开式中y2的系数是C,根据多项式乘法法则可得(1+x)8(1+y)4展开式中x2y2的系数为CC=28×6=168.

4.5的展开式中各项系数的和为2,则该展开式中常数项为()

A.-40B.-20C.20D.40

解析:选D由题意,令x=1得展开式各项系数的和为(1+a)·(2-1)5=2,a=1.

二项式5的通项公式为Tr+1=C(-1)r·25-r·x5-2r,

5展开式中的常数项为x·C(-1)322·x-1+·C·(-1)2·23·x=-40+80=40.

5.在(1-x)n=a0+a1x+a2x2+a3x3+…+anxn中,若2a2+an-3=0,则自然数n的值是()

A.7B.8C.9D.10

解析:选B易知a2=C,an-3=(-1)n-3·C=(-1)n-3C,又2a2+an-3=0,所以2C+(-1)n-3C=0,将各选项逐一代入检验可知n=8满足上式.

6.设aZ,且0≤a<13,若512012+a能被13整除,则a=()

A.0B.1C.11D.12

解析:选D512012+a=(13×4-1)2012+a,被13整除余1+a,结合选项可得a=12时,512012+a能被13整除.

7.(2015·杭州模拟)二项式5的展开式中第四项的系数为________.

解析:由已知可得第四项的系数为C(-2)3=-80,注意第四项即r=3.

答案:-808.(2013·四川高考)二项式(x+y)5的展开式中,含x2y3的项的系数是________(用数字作答).

解析:由二项式定理得(x+y)5的展开式中x2y3项为Cx5-3y3=10x2y3,即x2y3的系数为10.

答案:10

.(2013·浙江高考)设二项式5的展开式中常数项为A,则A=________.

解析:因为5的通项Tr+1=C()5-r·r=(-1)rCx-x-=(-1)rCx.令15-5r=0,得r=3,所以常数项为(-1)3Cx0=-10.即A=-10.

答案:-10

10.已知(1-2x)7=a0+a1x+a2x2+…+a7x7,求:

(1)a1+a2+…+a7;

(2)a1+a3+a5+a7;

(3)a0+a2+a4+a6;

(4)|a0|+|a1|+|a2|+…+|a7|.

解:令x=1,则a0+a1+a2+a3+a4+a5+a6+a7=-1.

令x=-1,则a0-a1+a2-a3+a4-a5+a6-a7=37.

(1)∵a0=C=1,a1+a2+a3+…+a7=-2.

(2)(-)÷2,得a1+a3+a5+a7==-1094.

(3)(+)÷2,得a0+a2+a4+a6==1093.

(4)(1-2x)7展开式中a0、a2、a4、a6大于零,而a1、a3、a5、a7小于零,

|a0|+|a1|+|a2|+…+|a7|

=(a0+a2+a4+a6)-(a1+a3+a5+a7)

=1093-(-1094)=2187.

11.若某一等差数列的首项为C-A,公差为m的展开式中的常数项,其中m是7777-15除以19的余数,则此数列前多少项的和?并求出这个值.

解:设该等差数列为{an},公差为d,前n项和为Sn.

由已知得又nN.,n=2,

C-A=C-A=C-A=-5×4=100,a1=100.

7777-15=(76+1)77-15

=7677+C·7676+…+C·76+1-15

=76(7676+C·7675+…+C)-14

=76M-14(MN.),

7777-15除以19的余数是5,即m=5.

m的展开式的通项是Tr+1=C·5-rr=(-1)rC5-2rxr-5(r=0,1,2,3,4,5),

令r-5=0,得r=3,代入上式,得T4=-4,即d=-4,从而等差数列的通项公式是an=100+(n-1)×(-4)=104-4n.

设其前k项之和,则解得k=25或k=26,故此数列的前25项之和与前26项之和相等且,

S25=S26=×25=×25=1300.

12.从函数角度看,组合数C可看成是以r为自变量的函数f(r),其定义域是{r|rN,r≤n}.

(1)证明:f(r)=f(r-1);

(2)利用(1)的结论,证明:当n为偶数时,(a+b)n的展开式中最中间一项的二项式系数.

解:(1)证明:f(r)=C=,f(r-1)=C=,

f(r-1)=·=.

则f(r)=f(r-1)成立.

(2)设n=2k,f(r)=f(r-1),f(r-1)>0,=.

令f(r)≥f(r-1),则≥1,则r≤k+(等号不成立).

当r=1,2,…,k时,f(r)>f(r-1)成立.

反之,当r=k+1,k+2,…,2k时,f(r)

高二上册数学(文科)寒假作业

1. 已知椭圆的长轴长是短轴长的2倍,则离心率等于

2. P是双曲线上任一点,是它的左、右焦点,且则=________

3.直线y=x+1被椭圆所截得的弦的中点坐标是

4.虚轴长为12,离心率为的双曲线标准方程为

5. 点P是抛物线y=4x上一动点,则点P到点A(0,-1)的距离与P到直线x=-1的距离和的最小值是

6.椭圆的左右焦点分别为,椭圆上动点A满足,则椭圆的离心率的取值范围为

7.已知A(1,0),Q为椭圆上任一点,求AQ的中点M的轨迹方程。

8.过点Q(4,1)作抛物线y的弦AB,若AB恰被Q平分,求AB所在的直线方程.

作业(11)

1.抛物线的准线方程是 ( )

A. B. C. D.

2.已知两点、,且是与的等差中项,则动点的轨迹方程是 (    )

A. B. C. D.

3.抛物线y=x2到直线 2x-y=4距离最近的点的坐标是 (    )

A. B.(1,1)    C. D.(2,4)

4. 抛物线y=ax的准线方程为y=1,则抛物线实数a=

5.是椭圆上的点,、是椭圆的两个焦点,,则的面积等于 .

6.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米。当水面升高1米后,水面宽度是________米。

7. 如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是

8.双曲线的中心在原点,右焦点为,渐近线方程为.

(1)求双曲线的方程;(2)设直线:与双曲线交于、两点,问:当为何值时,以为直径的圆过原点;

作业(12)

1.过抛物线的焦点作直线交抛物线于A(x1,y1)、B(x2,y2)两点,如果x1+x2=6,则|AB|的长是(   )

A.10 B.8 C.6 D.4

2.已知F1、F2是双曲线的两个焦点,M为双曲线上的点,若

MF1⊥MF2,∠MF2F1 = 60°,则双曲线的离心率为(   )

A. B. C. D.

3.抛物线y=-的焦点坐标为

4. 过点M(2,4)与抛物线只有一个公共点的直线有 条

5. 已知B、C 是两定点,且=6,的周长为16则顶点A的轨迹方程

6.与椭圆有共同的焦点,且过点的双曲线的方程为

7.一个动圆与已知圆Q:外切,与圆内切,试求这个动圆圆心M的轨迹方程。

8.设两点在抛物线上,是AB的垂直平分线,(1)当且仅当取何值时,直线经过抛物线的焦点F?证明你的结论;(2)当时,求直线的方程. 作业(13)

1.抛物线与直线交于、两点,其中点的坐标为,设抛物线的焦点为,则等于 (    )

A.7 B. C.6 D.5

2.直线是双曲线的右准线,以原点为圆心且过双曲线的顶点的圆,被直线分成弧长为2 : 1的两段圆弧,则该双曲线的离心率是 (   )

A.2 B. C. D.

3.已知曲线与其关于点对称的曲线有两个不同的交点和,如果过这两个交点的直线的倾斜角是,则实数的值是 (   )

A.1 B. C.2 D.3

4.方程所表示的曲线是 (   )

A. 双曲线 B. 抛物线 C. 椭圆 D.不能确定

5.对于曲线C∶=1,下面正确命题的序号为_____________.

①由线C不可能表示椭圆;②当1<k<4时,曲线c表示椭圆;③若曲线c表示双曲线,则k

6.已知椭圆的两个焦点分别为,点P在椭圆上,且满足,,则该椭圆的离心率为

7.已知双曲线与椭圆共焦点,且以为渐近线,求双曲线方程.

8.已知动圆过定点P(1,0),且与定直线l:x=-1相切,点C在l上.(1)求动圆圆心的轨迹M的方程;(2)设过点P,且斜率为-的直线与曲线M相交于A、B两点。

问:△ABC能否为正三角形?若能,求点C的坐标;若不能,说明理由。

作业(14)

1.若抛物线上一点到准线的距离等于它到顶点的距离,则点的坐标为(    )

A.    B.   C.    D.

2.若点的坐标为,是抛物线的焦点,点在抛物线上移动时,使取得最小值的的坐标为 (   )

A. B. C. D.

3.直线与双曲线的右支交于不同的两点,则的取值范围是(    )

A.()   B.()    C.()    D.()

4.抛物线上两点、关于直线对称,且,则等于( )

A.    B.   C.   D.

5.椭圆的一个焦点为F,点P在椭圆上,如果线段PF的中点M在y轴上,那么点M的纵坐标是

6. 若点O和点F分别为椭圆中心和左焦点,点P为椭圆上的任意一点,则的值为

7.已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点B恰好是抛物线的焦点,离心率等于.直线与椭圆C交于两点.(1)求椭圆C的方程;(2) 椭圆C的右焦点是否可以为的垂心?若可以,求出直线的方程;若不可以,请说明理由. 作业(15)

1.一个物体的运动方程为其中的单位是米,的单位是秒,那么物体在秒末的瞬时速度是(   )

A.米/秒 B.米/秒 C.米/秒 D.米/秒

2.函数的递增区间是(    )

A. B. C. D.

3.,若,则的值等于(    )

A. B.    C.    D.

4.函数在一点的导数值为是函数在这点取极值的(    )

A.充分条件    B.必要条件   C.充要条件    D.必要非充分条件

5.函数在区间上的最小值为_______________

6.曲线在点处的切线倾斜角为__________;

7.曲线在点处的切线的方程为_______________

8.设函数,.(1)试问函数能否在时取得极值?说明理由;(2)若,当时,与的图象恰好有两个公共点,求的取值范围.