高一下学期优秀数学教学计划1
本学期高一数学备课组的工作紧紧围绕学校、教科处及教研组的计划安排来开展,以教学改革为动力、以学校创建为前提、以提高课堂效率为目的、以自主教育为模式、以现代信息技术为手段、以培养学生的创新能力为目标,全面改进教育教学方法,更新教育观念,改变传统教学模式,培养学生综合素质,搞好本学期工作。
一、指导思想
以教研组工作计划为指导,按照均衡、优质、高效原则,精诚团结,和谐创新,加强科组建设,提高高一数学备课组的整体实力;努力完成本学期的教学目标,进一步提高作为未来公民所必要的数学素养,以满足学生发展与社会进步的需要。这学期的工作重点是继续进行新课标和新教材的研究,要着重抓好差生辅导和尖子生的培养,让绝大部分学生跟上教学进度。
二、工作思路
1.在学校科研处和教务处的领导下,有计划地组织好全组教师的学习与培训工作,特别是搞好新课程标准和新教材的学习、研究和交流,落实学校的办学理念。推广现代教育科研成果,定期开展多种形式的教研活动。
2.以组风建设为主线,以新课程标准为指导,以教法探索为重点,以构建主动发展型课堂教学模式为主题,以提高队伍素质,提高课堂效率,提高教学质量为目的。深化课堂教学改革,努力改善教与学的方式。
3.教学研究要以集体备课为基础,以作课、听课、评课活动以及出考卷活动为载体,以课题研究、论文、案例撰写为提高,在研究状态下理性的工作。培养本组教师养成教学反思的习惯,
三、教材分析(结构系统、单元内容、重难点)
必修5:
第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;
第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;
第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与基本不等式;难点是二元一次不等式(组)及应用;
必修2:
第一章:立体几何初步。重点是空间几何体的三视图和直观图及表面积与体积,直线与平面平行及垂直的判定及其性质;难点是空间几何体的三视图,直线与平面平行及垂直的判定及其性质;
第二章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系。
四、学情分析
经过一学期的观察发现学生的基础知识水平、学习自觉性与基本学习方法比较欠缺,学生心理不稳定,空间思维、抽象思维、逻辑思维较差,而本学期所要学习的内容包含了高中数学中重要而难学的数列、不等式、立体几何部分,因而教学时尽可能以课本为本,注重基础和规范,不随意拔高难度,努力使绝大部分学生打好三基。教学时在完成市教学进度的前提下,尽可能的放慢速度,确保绝大部分学生的学习质量。平时教学中老师要注意不断鼓励和欣赏学生的优点和进步,使学生不断体验到学习数学的乐趣。平时测试要注重考查三基,严格控制难度,使绝大部分学生及格,使学生体验到进步和成功的喜悦。同时需进一步加强学法指导,多于学生进行情感交流。
五、工作目标
1、狠抓教学常规和学习常规的贯彻落实。在数学教学研究中努力做到三主(教学研究以学习理论为主导、大纲教材课程标准为主体、探索教学模式为主线)和三有(教学研究要对教学实践有指导、对教学质量有促进、对教师有提高)。
2、加强现代教育教学理论的学习,积极进行课堂教学改革试验、逐步形成本学科特色,把我组建设成一个团结协作、富有开拓创新精神的先进集体。
3、把对新课程标准的学习与对新教材的研究结合起来,力求使每一位数学老师都能较好地领会新课程标准的基本理念和目标,较好地把握数学学习内容中有关数感、符号感、空间观念、统计观念、应用意识、推理能力等核心概念的内涵和要求,初步掌握所教教材的结构特点、每章每节教材的地位、作用和目标要求。
4、认真做好义务教育数学实验教材和高中新教材的阶段总结,加强教法的研究,注意总结和发现典型的教学案例,积极组织本组教师做好资料、信息收集工作,撰写教育教学论文、案例,争取在全国等各级论文评比中获奖。
六、具体措施:
1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。
2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。
3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。
4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。
5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。
6、重视数学应用意识及应用能力的培养。
7、积极做好集体备课工作,达到内容统一、进度统一、目标统一、例习题统一、资料统一、测试统一;上好每一节课,及时对学生的学习进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
高一下学期优秀数学教学计划2
一、教材分析(结构系统、单元内容、重难点)
必修5第一章:解三角形;重点是正弦定理与余弦定理;难点是正弦定理与余弦定理的应用;第二章:数列;重点是等差数列与等比数列的前n项的和;难点是等差数列与等比数列前n项的和与应用;第三章:不等式;重点是一元二次不等式及其解法、二元一次不等式(组)与简单的线性规划问题、基本不等式;难点是二元一次不等式(组)与简单的线性规划问题及应用;
必修2第一章:空间几何体;重点是空间几何体的三视图和直观图及表面积与体积;难点是空间几何体的三视图;第二章:点、直线、平面之间的位置关系;重点与难点都是直线与平面平行及垂直的判定及其性质;第三章:直线与方程;重点是直线的倾斜角与斜率及直线方程;难点是如何选择恰当的直线方程求解题目;第四章:圆与方程;重点是圆的方程及直线与圆的位置关系;难点是直线与圆的位置关系;
二、学生分析(双基智能水平、学习态度、方法、纪律)
较去年而言,今年的学生的素质有了比较大的提高,学生的基础知识水平与基本学习方法比较扎实,大部分的学生对学习都有很大的兴趣,学习纪律比较自觉。
三、教学目的要求
1.通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题和与测量及几何计算有关的实际问题。
2.通过日常生活中的实例,了解数列的概念和几种简单的表示方法,了解数列是一种特殊的函数;理解等差数列、等比数列的概念,探索并掌握2种数列的通项公式与前n项和的公式,能用有关的.知识解决相应的问题。
3.理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用一元二次不等式组表示平面区域,并尝试解决简单的二元线性规划问题。
4.几何学研究现实世界中物体的形状、大小与位置的学科。直观感知、操作确认、思辨论证、度量计算是认识和探索几何图形及其性质的方法。先从对空间几何体的整体观察入手,认识空间图形及其直观图的画法;再以长方体为载体,直观认识和理解空间中点、直线、平面之间的位置关系,并利用数学语言表述有关平行、垂直的性质与判定,对某些结论进行论证。另外了解一些简单几何体的表面积与体积的计算方法。在解析几何初步中,在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互关系,了解空间直角坐标系。体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
四、完成教学任务和提高教学质量的具体措施
积极做好集体备课工作,达到内容统一、进度统一、目标统一、例题统一、习题统一、资料统一;上好每一节课,及时对学生的思想进行观察与指导;课后进行有效的辅导;进行有效的课堂反思。
高一下学期优秀数学教学计划3
一、内容及其解析
1、内容:这是一节建立直线的点斜式方程(斜截式方程)的概念课。学生在此之前已学习了在直角坐标系内确定直线一条直线几何要素,已知直线上的一点和直线的倾斜角(斜率)可以确定一条直线,已知两点也可以确定一条直线。本节要求利用确定一条直线的几何要素直线上的一点和直线的倾斜角,建立直线方程,通过方程研究直线。
2、解析:直线方程属于解析几何的基础知识,是研究解析几何的开始。从整体来看,直线方程初步体现了解析几何的实质用代数的知识研究几何问题。从集合与对应的角度构建了平面上的直线与二元一次方程的一一对应关系,是学习解析几何的基础。对后续圆、直线与圆的位置关系等内容的学习,无论是知识上还是方法上都有着积极的意义。从本节来看,学生对直线既是熟悉的,又是陌生的。熟悉是学生知道一次函数的图像是直线,陌生是用解析几何的方法求直线的方程。直线的点斜式方程是推导其它直线方程的基础,在直线方程中占有重要地位。
二、目标及其解析
1、目标
掌握直线的点斜式和斜截式方程的推导过程,并能根据条件熟练求出直线的点斜式方程和斜截式方程。
2、解析
①知道直线上的一点和直线的倾斜角的代数含义是这个点的坐标和这条直线的斜率。知道建立直线方程就是将确定直线的几何要素用代数形式表示出来。
②理解建立直线点斜式方程就是用直线上任意一点与已知点这两个点的坐标表示斜率。
③经历直线的点斜式方程的推导过程,体会直线和直线方程之间的关系,渗透解析几何的基本思想。
④在讨论直线的点斜式方程的应用条件与建立直线的斜截式方程中,体会分类讨论的思想,体会特殊与一般思想。
⑤在建立直线方程的过程中,体会数形结合思想。在直线的斜截式方程与一次函数的比较中,体会两者区别与联系,特别是体会两者数形结合的区别,进一步体会解析几何的基本思想。
三、教学问题诊断分析
1、学生在初中已经学习了一次函数,知道一次函数的图像是一条直线,因此学生对研究直线的方程可能心存疑虑,产生疑虑的原因是学生初次接触到解析几何,不明确解析几何的实质,因此应跟学生讲请解析几何与函数的区别。
2、学生能听懂建立直线的点斜式的过程,但可能会不知道为什么要这么做。因此还是要跟学生讲清坐标法的实质把几何问题转化成代数问题,用代数运算研究几何图形性质。
3、由于学生没有学习曲线与方程,因此学生难以理解直线与直线的方程,甚至认为验证直线是方程的直线是多余的。这里让学生初步理解就行,随着后面教学的深入和反复渗透,学生会逐步理解的。
四、教法与学法分析
1、教法分析
新课标指出,学生是教学的主体。教师要以学生活动为主线。在原有知识的基础上,构建新的知识体系。本节课可采用启发式问题教学法教学。通过问题串,启发学生自主探究来达到对知识的发现和接受。通过纵向挖掘知识的深度,横向加强知识间的联系,培养学生的创新精神。并且使学生的有效思维量加大,随着对新知识和方法产生有意注意,使能力与知识的形成相伴而行,使学生在解决问题的同时,形成方法。
2、学法分析
改善学生的学习方式是高中数学课程追求的基本理念。学生的数学学习活动不仅仅限于对概念结论和技能的记忆、模仿和积累。独立思考,自主探索,动手实践,合作交流,阅读自学等都是学习数学的重要方式,这些方式有助于发挥学生学习主观能动性,使学生的学习过程成为在教师引导下的再创造的过程。为学生形成积极主动的、多样的学习方式创造有利的条件。以激发学生的学习兴趣和创新潜能,帮助学生养成独立思考,积极探索的习惯。
通过直线的点斜式方程的推导,加深对用坐标求方程的理解;通过求直线的点斜式方程,理解一个点和方向可以确定一条直线;通过求直线的斜截式方程,熟悉用待定系数法求的过程,让学生利用图形直观启迪思维,实现从感性认识到理性思维质的飞跃。让学生从问题中质疑、尝试、归纳、总结,培养学生发现问题、研究问题和分析解决问题的能力。
五、教学过程设计
问题1:在直角坐标系内确定直线一条直线几何要素是什么?如何将这些几何要素代数化?
[设计意图]让学生理解直线上的一点和直线的倾斜角的`代数含义是这个点的坐标和这条直线的斜率。
问题2:建立直线方程的实质是什么?
[设计意图]建立直线方程就是将确定直线的几何要素用代数形式表示出来。也就是将直线上点的坐标满足的条件用方程表示出来。
引例:若直线经过点,斜率为,点在直线上运动,那么点的坐标满足什么条件?
[设计意图]让学生通过具体例子经历求直线的点斜式方程的过程,初步了解求直线方程的步骤。
问题2.1要得到坐标满足什么条件,就是找出与、斜率为之间的关系,它们之间有何种关系?
(过与两点的直线的斜率为)
[设计意图]让学生寻找确定直线的条件,体会动中找静。
问题2.2如何将上述条件用代数形式表示出来?
[设计意图]让学生理解和体会用坐标表示确定直线的条件。
用代数式表示出来就是,即。
问题2.3为什么说是满足条件的直线方程?
[设计意图]让学生初步感受直线与直线方程的关系。
此时的坐标也满足此方程。所以当点在直线上运动时,其坐标满足。
另外以方程的解为坐标的点也在直线上。
所以我们得到经过点,斜率为的直线方程是。
问题2.4:能否说方程是经过,斜率为的直线方程?
[设计意图]让学生初步感受直线(曲线)方程的完备性。尽管学生不可能深刻理解直线(曲线)方程的完备性,但在这里仍要渗透,为后因理解曲线方程的埋下伏笔。
问题3:推广:已知一直线过一定点,且斜率为k,怎样求直线的方程?
[设计意图]由特殊到一般的学习思路,培养学生的是归纳概括能力。
问题4:直线上有无数个点,如何才能选取所有的点?以前学习中有没有类似的处理问题的方法?
[设计意图]引导学生掌握解析几何取点的方法。
引导学生求出直线的点斜式方程
注:在求直线方程的过程中要说明直线上的点的坐标满足方程,也要说明以方程的解为坐标的点在直线上,即方程的解与直线上的点的坐标是一一对应的。为以后学习曲线与方程打好基础。教学中让学生感觉到这一点就可以。不必做过多解释。
问题5:从求直线方程的过程中,你知道了求几何图形的方程的步骤有哪些吗?
[设计意图]让学生初步感受解析几何求曲线方程的步骤。
①设点———用表示曲线上任一点的坐标;
②寻找条件————写出适合条件;
③列出方程————用坐标表示条件,列出方程
④化简———化方程为最简形式;
⑤证明————证明以化简后的方程的解为坐标的点都是曲线上的点。
例1分别求经过点,且满足下列条件的直线的方程,并画出直线。
⑴倾斜角
⑵斜率
⑶与轴平行;
⑷与轴平行。
[设计意图]让学生掌握直线的点斜式的使用条件,把直线的点斜式方程作公式用,让学生熟练掌握直线的点斜式方程,并理解直线的点斜式方程使用条件。
注:⑴应用直线的点斜式方程的条件是:①定点,②斜率存在,即直线的倾斜角。
⑵与的区别。后者表示过,且斜率为k的直线方程,而前者不包括。
⑶当直线的倾斜角时,直线的斜率,直线方程是。
⑷当直线的倾斜角时,此时不能直线的点斜式方程表示直线,直线方程是。
练习:
已知直线的方程是,则直线的斜率为,倾斜角为,这条直线经过的一个已知点为。
[设计意图]在直线的点斜式方程的逆用过程中,进一步体会和理解直线的点斜式方程。
问题6:特别地,如果直线的斜率为,且与轴的交点坐标为(0,b),求直线的方程。
[设计意图]由一般到特殊,培养学生的推理能力,同时引出截距的概念和直线斜截式方程。
将斜率与定点代入点斜式直线方程可得:
说明:我们把直线与y轴交点(0,b)的纵坐标b叫做直线在y轴上的截距。这个方程是由直线的斜率与它在y轴上的截距b确定,所以叫做直线的斜截式方程。
注(1)截距可取任意实数,它不同于距离。直线在轴上截距的是。
(2)斜截式方程中的k和b有明显的几何意义。
(3)斜截式方程的使用范围和斜截式一样。
问题7:直线的斜截式方程与我们学过的一次函数的类似。我们知道,一次函数的图像是一条直线。你如何从直线方程的角度认识一次函数?一次函数中k和b的几何意义是什么?
[设计意图]让学生理解直线方程与一次函数的区别与联系,进一步理解解析几何的实质。函数图像是以形助数,而解析几何是以数论形。
练习:
1、直线的斜率为2,在轴上的截距为,求直线的方程。
[设计意图]让学生明确截距的含义。
2、直线过点,它的斜率与直线的斜率相等,求直线的方程。
[设计意图]让学生进一步理解直线斜截式方程的结构特征。
3、已知直线过两点和,求直线的方程。
[设计意图]让学生能合理选择直线方程的不同形式求直线方程,同时为下节学习直线的两点式方程埋下伏笔。
例2:已知直线,试讨论
(1)与平行的条件是什么?
(2)与重合的条件是什么?
(3)与垂直的条件是什么?
说明:①平行、重合、垂直都是几何上位置关系,如何用代数的数量关系来刻画。
②教学中从两个方面来说明,若两直线平行,则且反过来,若且,则两直线平行。
③若直线的斜率不存在,与之平行、垂直的条件分别是什么?
练习:
问题8:本节课你有哪些收获?
要点:
(1)直线方程的点斜式、斜截式的命名都是顾名思义的,要会加以区别。
(2)两种形式的方程要在熟记的基础上灵活运用。
总结:制定教学计划的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学。
高一下学期优秀数学教学计划4
一、教材依据
本节课是北师大版数学(必修2)第二章《解析几何初步》第一节《1.2直线的方程》第一部分《直线方程的点斜式》内容。
二、教材分析
直线方程的点斜式给出了根据已知一个点和斜率求直线方程的方法和途径。在求直线的方程中,直线方程的点斜式是基本的,直线方程的斜截式
、两点式都是由点斜式推出的。从初中代数中的一次函数引入,自然过渡到本节课想要解决的问题求直线方程问题。在引入,过程中要让学生弄清
直线与方程的一一对应关系,理解研究直线可以从研究方程和方程的特征入手。
在推导直线方程的点斜式时,根据直线这一结论,先猜想确定一条直线的条件,再根据猜想得到的条件求出直线方程。
三、教学目标
知识与技能:
(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;
(2)能正确利用直线的点斜式、斜截式公式求直线方程。
(3)体会直线的斜截式方程与一次函数的关系。
过程与方法:在已知直角坐标系内确定一条直线的几何要素直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生
通过对比理解截距与距离的区别。
情态与价值观:通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化
等观点,使学生能用联系的观点看问题。
四、教学重点
重点:直线的点斜式方程和斜截式方程。
五、教学难点
难点:直线的点斜式方程和斜截式方程的应用。
要点:运用数形结合的思想方法,帮助学生分析描述几何图形。
六、教学准备
1.教学方法的选择:启发、引导、讨论.
创设问题情境,采用启发诱导式的教学模式引导学生探索讨论,学生主动参与提出问题、探索问题和解决问题的过程,突出以学生为主体的探究性
学习活动。
2.通过让学生观察、讨论、辨析、画图,亲身实践,调动多感官去体验数学建模的思想;学生要学会用数形结合的方法建立起代数问题与几何问题
间的密切联系。为使学生积极参与课堂学习,我主要指导了以下的学习方法:
①.让学生自己发现问题,自己通过观察图像归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力。
②.分组讨论。
高一下学期优秀数学教学计划5
教材教法分析
本节课是苏教版普通高中课程标准实验教科书数学必修(2)第2章第三节的第一节课.该课是在二维平面直角坐标系基础上的推广,是空间立体几何的代数化.教材通过一个实际问题的分析和解决,让学生感受建立空间直角坐标系的必要性,内容由浅入深、环环相扣,体现了知识的发生、发展的过程,能够很好的诱导学生积极地参与到知识的探究过程中.同时,通过对《空间直角坐标系》的学习和掌握将对今后学习本节内容《空间两点间的距离》和选修2-1内容《空间中的向量与立体几何》有着铺垫作用.由此,本课打算通过师生之间的合作、交流、讨论,利用类比建立起空间直角坐标系.
学情分析
一方面学生通过对空间几何体:柱、锥、台、球的学习,处理了空间中点、线、面的关系,初步掌握了简单几何体的直观图画法,因此头脑中已建立了一定的空间思维能力.另一方面学生刚刚学习了解析几何的基础内容:直线和圆,对建立平面直角坐标系,根据坐标利用代数的方法处理问题有了一定的认识,因此也建立了一定的转化和数形结合的思想.这两方面都为学习本课内容打下了基础.
教学目标
1.知识与技能
①通过具体情境,使学生感受建立空间直角坐标系的必要性
②了解空间直角坐标系,掌握空间点的坐标的确定方法和过程
③感受类比思想在探究新知识过程中的作用
2.过程与方法
①结合具体问题引入,诱导学生探究
②类比学习,循序渐进
3.情感态度与价值观
通过用类比的数学思想方法探究新知识,使学生感受新旧知识的联系和研究事物从低维到高维的一般方法.通过实际问题的引入和解决,让学生体会数学的实践性和应用性,感受数学刻画生活的作用,不断地拓展自己的思维空间.
教学重点
本课是本节第一节课,关键是空间直角坐标系的建立,对今后相关内容的学习有着直接的影响作用,所以本课教学重点确立为空间直角坐标系的理解.
教学难点
通过建立恰当的空间直角坐标系,确定空间点的坐标。
先通过具体问题回顾平面直角坐标系,使学生体会用坐标刻画平面内任意点的位置的方法,进而设置具体问题情境促发利用旧知解决问题的局限性,从而寻求新知,根据已有一定空间思维,所以能较容易得出第三根轴的建立,进而感受逐步发展得到空间直角坐标系的建立,再逐步掌握利用坐标表示空间任意点的位置.总得来说,关键是具体问题情境的设立,不断地让学生感受,交流,讨论.
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学
川教版九年级历史下册教案范文
初二数学上册教学计划素材五篇
人教版初一生物下册知识点最新
九年级历史法制渗透教案五篇
初二数学上册教学计划素材五篇
六年级通用数学教学计划范文五篇
三年级数学教学工作计划最新五篇
新版北师大版二年级下册数学教案最新模板
最新一年级数学跷跷板教案模板
二年级下册数学统计教案文案
齐齐哈尔工程学院在新疆高考招生计划人数专业代码(2024参考)
宁夏工商职业技术学院在河南高考招生计划人数专业代码(2024参考)
河北高考排名184970左右排位历史可以上哪些大学,具体能上什么大学
湖北高考排名174600左右排位物理可以上哪些大学,具体能上什么大学
考福州外语外贸学院要多少分宁夏考生 附2024录取名次和最低分
湖南师范大学在云南高考招生计划人数专业代码(2024参考)
广东高考排名247430左右排位物理可以上哪些大学,具体能上什么大学
陕西青年职业学院在宁夏高考历年录戎数线(2024届参考)
安徽文达信息工程学院的审计学专业排名怎么样 附历年录戎数线
安徽高考排名263910左右排位理科可以上哪些大学,具体能上什么大学
考安顺学院要多少分广东考生 附2024录取名次和最低分
广东高考排名94120左右排位物理可以上哪些大学,具体能上什么大学
四川高考排名6710左右排位理科可以上哪些大学,具体能上什么大学
考洛阳科技职业学院要多少分甘肃考生 附2024录取名次和最低分
福建高考排名46830左右排位物理可以上哪些大学,具体能上什么大学
重庆机电职业技术大学的数控技术专业排名怎么样 附历年录戎数线
郑州升达经贸管理学院和辽宁工业大学哪个好 附对比和区别排名
赣州职业技术学院和扬州工业职业技术学院哪个好 附对比和区别排名
江西外语外贸职业学院在内蒙古高考历年录戎数线(2024届参考)
四川高考排名14260左右排位理科可以上哪些大学,具体能上什么大学
最新二年级数学奥运开幕教案例文
数学课程教学计划范文
数学功课新学期教学计划范文
最新三年级数学下册第二单元教案范文
三年级下册数学第四单元教案范文
小学二年级数学教学计划范文五篇
小学四年级数学教学计划最新五篇
高二年级数学教学总结报告五篇
七年级下册数学教学计划素材五篇
小学数学教学计划最新五篇
数学教学任务实用计划五篇
数学教学个人计划任务范文五篇
人教版3年级数学的教学计划范文
5年级上册数学的教学计划模板
九年级下册数学教学计划模板