初三数学公式总结归纳整理

李盛老师

等比公式求和的公式

(1)等比数列:a(n+1)/an=q(n∈N)。

(2)通项公式:an=a1×q^(n-1);

推广式:an=am×q^(n-m);

①若m、n、p、q∈N,且m+n=p+q,则am_an=ap_aq;

②在等比数列中,依次每k项之和仍成等比数列.

③若m、n、q∈N,且m+n=2q,则am_an=aq^2

(5)"G是a、b的等比中项""G^2=ab(G≠0)".

(6)在等比数列中,首项a1与公比q都不为零.

注意:上述公式中an表示等比数列的第n项。

二次函数的顶点坐标公式

对于二次函数y=ax^2+bx+c,

其顶点坐标为(-b/2a,(4ac-b^2)/4a)交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线],

其中x1,2=-b±√b^2-4ac,

顶点式:y=a(x-h)^2+k,

[抛物线的顶点P(h,k)],

一般式:y=ax^2+bx+c(a,b,c为常数,a≠0),

注:在3种形式的互相转化中,有如下关系:h=-b/2a=(x?+x?)/2k=(4ac-b^2)/4a与x轴交点:x?,x?=(-b±√b^2-4ac)/2a。

所以二次函数的顶点坐标公式是顶点坐标是(-b/2a,4ac-b2/4a)。

初三数学公式整理

1.①两圆外离d﹥R+r;②两圆外切d=R+r;③两圆相交R-r﹤d﹤R+r(R﹥r);④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)。

2.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。

3.正n边形的面积Sn=pnrn/2p表示正n边形的周长。

4.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。

5.扇形面积公式:S扇形=n∏R/360=LR/2。

6.内公切线长=d-(R-r)外公切线长=d-(R+r)。

7.推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。

8.圆的内部可以看作是圆心的距离小于半径的点的集合。

9.相似三角形判定定理1两角对应相等,两三角形相似(ASA)。

10.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h。

11.菱形面积=对角线乘积的一半,即S=(a×b)÷2。

12.多边形内角和定理n边形的内角的和等于(n-2)×180°。

13.勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形。

14.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c。

15.等腰三角形的性质定理等腰三角形的两个底角相等。