高中数学必修四诱导公式
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
高中数学必修四向量公式
1、向量的加法
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(_+_,y+y)。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。
2、向量的减法
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0
AB-AC=CB. 即共同起点,指向被减
a=(_,y) b=(_,y) 则 a-b=(_-_,y-y).
3、向量的的数量积
定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉[0,]。
定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。
向量的数量积的坐标表示:ab=__+yy。
向量的数量积的运算率
ab=ba(交换率);
(a+b)c=ac+bc(分配率);
向量的数量积的性质
aa=|a|的平方。
ab 〈=〉ab=0。
|ab||a||b|。
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(ab)ca(bc);例如:(ab)^2a^2b^2。
2、向量的数量积不满足消去律,即:由 ab=ac (a0),推不出 b=c。
3、|ab||a||b|
4、由 |a|=|b| ,推不出 a=b或a=-b。
4、数乘向量
实数和向量a的乘积是一个向量,记作a,且∣a∣=∣∣∣a∣。
当0时,a与a同方向;
当0时,a与a反方向;
当=0时,a=0,方向任意。
当a=0时,对于任意实数,都有a=0。
注:按定义知,如果a=0,那么=0或a=0。
实数叫做向量a的系数,乘数向量a的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣∣1时,表示向量a的有向线段在原方向(0)或反方向(0)上伸长为原来的∣∣倍;
当∣∣1时,表示向量a的有向线段在原方向(0)或反方向(0)上缩短为原来的∣∣倍。
数与向量的乘法满足下面的运算律
结合律:(a)b=(ab)=(ab)。
向量对于数的分配律(第一分配律):(+)a=a+a.
数对于向量的分配律(第二分配律):(a+b)=a+b.
数乘向量的消去律:① 如果实数0且a=b,那么a=b。② 如果a0且a=a,那么=。
高中数学必修四公式
平方关系:
sin^2α+cos^2α=1
1+tan^2α=sec^2α
1+cot^2α=csc^2α
积的关系:
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,
余弦等于角A的邻边比斜边
正切等于对边比邻边,
[1]三角函数恒等变形公式
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
三角和的三角函数:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
辅助角公式:
Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中
sint=B/(A2+B2)^(1/2)
cost=A/(A2+B2)^(1/2)
tant=B/A
Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)
tan(2α)=2tanα/[1-tan2(α)]
三倍角公式:
sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)
cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)
tan(3α)=tan a · tan(π/3+a)· tan(π/3-a)
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降幂公式
sin2(α)=(1-cos(2α))/2=versin(2α)/2
cos2(α)=(1+cos(2α))/2=covers(2α)/2
tan2(α)=(1-cos(2α))/(1+cos(2α))
万能公式:
sinα=2tan(α/2)/[1+tan2(α/2)]
cosα=[1-tan2(α/2)]/[1+tan2(α/2)]
tanα=2tan(α/2)/[1-tan2(α/2)]
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
推导公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos2α
1-cos2α=2sin2α
1+sinα=(sinα/2+cosα/2)2
其他:
sinα+sin(α+2π/n)+sin(α+2π_2/n)+sin(α+2π_3/n)+……+sin[α+2π_(n-1)/n]=0
cosα+cos(α+2π/n)+cos(α+2π_2/n)+cos(α+2π_3/n)+……+cos[α+2π_(n-1)/n]=0 以及
sin2(α)+sin2(α-2π/3)+sin2(α+2π/3)=3/2
tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
cos_+cos2_+...+cosn_= [sin(n+1)_+sinn_-sin_]/2sin_
证明:
左边=2sin_(cos_+cos2_+...+cosn_)/2sin_
=[sin2_-0+sin3_-sin_+sin4_-sin2_+...+ sinn_-sin(n-2)_+sin(n+1)_-sin(n-1)_]/2sin_ (积化和差)
=[sin(n+1)_+sinn_-sin_]/2sin_=右边
等式得证
sin_+sin2_+...+sinn_= - [cos(n+1)_+cosn_-cos_-1]/2sin_
证明:
左边=-2sin_[sin_+sin2_+...+sinn_]/(-2sin_)
=[cos2_-cos0+cos3_-cos_+...+cosn_-cos(n-2)_+cos(n+1)_-cos(n-1)_]/(-2sin_)
=- [cos(n+1)_+cosn_-cos_-1]/2sin_=右边
等式得证
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学
教师资格证初中数学考点整理
高中数学公式学习总归纳
电子版个人求职简历范文五篇
中考备考之家长必读有哪些
高中数学公式学习总归纳
小学数学常用公式归纳总结
小学数学公式定理总结大全
新版北师大版二年级下册数学教案最新模板
最新一年级数学跷跷板教案模板
二年级下册数学统计教案文案
齐齐哈尔工程学院在新疆高考招生计划人数专业代码(2024参考)
宁夏工商职业技术学院在河南高考招生计划人数专业代码(2024参考)
河北高考排名184970左右排位历史可以上哪些大学,具体能上什么大学
湖北高考排名174600左右排位物理可以上哪些大学,具体能上什么大学
考福州外语外贸学院要多少分宁夏考生 附2024录取名次和最低分
湖南师范大学在云南高考招生计划人数专业代码(2024参考)
广东高考排名247430左右排位物理可以上哪些大学,具体能上什么大学
陕西青年职业学院在宁夏高考历年录戎数线(2024届参考)
安徽文达信息工程学院的审计学专业排名怎么样 附历年录戎数线
安徽高考排名263910左右排位理科可以上哪些大学,具体能上什么大学
考安顺学院要多少分广东考生 附2024录取名次和最低分
广东高考排名94120左右排位物理可以上哪些大学,具体能上什么大学
四川高考排名6710左右排位理科可以上哪些大学,具体能上什么大学
考洛阳科技职业学院要多少分甘肃考生 附2024录取名次和最低分
福建高考排名46830左右排位物理可以上哪些大学,具体能上什么大学
重庆机电职业技术大学的数控技术专业排名怎么样 附历年录戎数线
郑州升达经贸管理学院和辽宁工业大学哪个好 附对比和区别排名
赣州职业技术学院和扬州工业职业技术学院哪个好 附对比和区别排名
江西外语外贸职业学院在内蒙古高考历年录戎数线(2024届参考)
四川高考排名14260左右排位理科可以上哪些大学,具体能上什么大学
最新二年级数学奥运开幕教案例文
数学课程教学计划范文
数学功课新学期教学计划范文
最新三年级数学下册第二单元教案范文
三年级下册数学第四单元教案范文
小学常用数学公式总结大全
初中数学常用计算公式总结
关于数学学习方法
小学数学常用公式总结归纳
初中常用物理公式总结归纳
高中数学重点公式归纳总结
小学数学组教学研讨活动总结
初中学生中考数学考前必备公式总结
小学一至六年级数学公式总结归纳
苏教版高中数学常用公式归纳大全