初中数学考试压轴题解题技巧方法

刘莉莉老师

中考数学压轴题解题技巧

1.学会运用 与方程思想。

从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或 的数学模型,从而使问题得到解决的思维方法,这就是方程思想。

用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。

2.学会运用数形结合思想。

数形结合思想是指从几何直观的角度,利用 的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合 思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

纵观近几年全国各地的中考压轴题,绝大部分都是与 有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

3.要学会抢得分点。

一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。如中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到 ;第2小题中等,起到承上启下的作用;第3题偏难,不过往往建立在1、2两小题的基础之上。因此,我们在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。

4.学会运用等价转换思想。

转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。

中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。

中考压轴题所考察的并非孤立的 ,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的 ,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。

5.学会运用分类讨论的思想。

分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。

在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。

分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.正确的分类必须是周全的,既不重复、也不遗漏

中考数学压轴题解题技巧思路

1.1压轴题的概念

中考数学试卷中的试题排列顺序通常都遵循着“从简单到复杂、从易到难”的原则。中考试题中按题型分类的排列顺序一般是:一、选择题(客观题,有些地方将其称作“第Ⅰ卷”);二、填空题(形式简单的主观题);三、解答题(二、三也合称第Ⅱ卷)。在这三类题型中,思维难度较大的题目一般都设置在各类题型的最后一题,被称作压轴题。

中考压轴题按其题型的区别及在整个试卷中的位置情况又可分为两类:选择题和填空题型的压轴题,常被称作小压轴题;解答题型压轴题(也即整个试卷的最后一题),叫大压轴题,通常所说的压轴题一般都指大压轴题。

1.2压轴题的特点

中考数学压轴题的设计,大都有以下共同特点:知识点多、覆盖面广、条件隐蔽、关系复杂、思路难觅、解法灵活。纵观近几年全国各地数学中考压轴题,呈现了百花齐放的局面,就题型而言,除传统的函数综合题外,还有操作题、开放题、图表信息题、动态几何题、新定义题型、探索题型等,令人赏心悦目。

中考压轴题主要是为考察考生综合运用知识的能力而设计的题目,其思维难度高,综合性强,往往都具有较强的选拔功能,是为了有效地区分数学学科中尖子学生与一般学生的试题。

在课程改革不断向前推进的形势下,全国各地近年涌现出了大量的精彩的压轴题。丰富的、公平的背景、精巧优美的结构,综合体现出多种解答数学问题的思想方法,贴近生活、关注热点、常中见拙、拙中藏巧、一题多问、层层递进,为不同层次的学生展示自己的才华创设了平台。

1.3压轴题应对策略

针对近年全国各地中考数学压轴题的特点,在中考复习阶段,我们要狠抓基础知识的落实,因为基础知识是“不变量”,而所谓的考试“热点”只是与题目的形式有关。要有效地解答中考压轴题,关键是要以不变应万变。加大综合题的训练力度,加强解题方法的训练,加强数学思想方法的渗透,注重“基本模式”的积累与变化,调适学生心理,增强学生信心。

学生在压轴题上的困难可能来自多方面的原因,如:基础知识和基本技能的欠缺、解题经验的缺失或训练程度不够、自信心不足等。学生在压轴题上的具体困难则可能是:“不知从何处下手,不知向何方前进”。

在求解中考数学压轴题时,重视一些数学思想方法的灵活应用,是解好压轴题的重要工具,也是保证压轴题能求解得“对而全、全而美”的重要前提。本文就20_年全国各地部分中考压轴题为例,简要分析一些重要的数学思想方法在求解中考压轴题时的重要作用。

初三数学压轴题解题方法技巧

一般地 ,中考数学压轴题通常有3小问,其中第一问比较简单,中等水平的学生能够比较轻易地解出来。所以,同学们看到压轴题,不要产生恐惧心理,拿下第一问还能得两三分。第二问通常有些难度,通常要利用第一问的条件和结论,所以,如果第一问做不出来,后面就别提了。第三问难度最大,考验的是同学的综合能力。

1、以坐标系为桥梁,运用数形结合思想

纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

2、以直线或抛物线知识为载体,运用函数与方程思想

直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。

因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。

3、利用条件或结论的多变性,运用分类讨论的思想

分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察。

有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。

4、综合多个知识点,运用等价转换思想

任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换。

中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。

5、分题得分

中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。

6、分段得分

一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。