六年级下册数学教案人教版模板

李盛老师

六年级下册数学教案人教版2021模板1

教学内容:

第87页例1、例2,88页课堂活动第1、2题,练习二十二第1~4题。

教学目标:

1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。

2.会正确地读、写正、负数,知道0既不是正数,也不是负数。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。

教学重点:

负数的意义和负数的读法与写法。

教学难点:

理解0既不是正数,也不是负数。

教具准备:

多媒体课件

教学方法:

教师讲授、合作交流

教学过程:

一、复习导入

提出问题:举例说明我们学过了哪些数?

教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。

提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?

二、创设情境、学习新知

1.教学例1。

(1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”

同学们,你们对情境中的内容一定相当熟悉吧?你能给大家讲讲“哈尔滨零下6至3度”这句话是什么意思吗?

为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?

这里有零下6℃、零上6℃,都记作6℃行吗?

你有什么简洁的方法来表示他们的不同呢?

教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。

(2)巩固练习。

同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。

学生独立完成第87页下图的练习。

教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。

2.自主学习例2。(进一步认识正数和负数)

教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

今天,老师还带来一张珠穆朗玛峰的海拔图,请看。(珠穆朗玛峰的海拔图,教科书第87页的左部分,数字前没有符号)从图上你看懂了些什么?

引导学生交流:珠穆朗玛峰比海平面高8844.43米。

我们再来看x疆的吐鲁番盆地的海拔图。(吐鲁番盆地的海拔情况,教科书第87页的右部分,数字前没有符号)你又能从图上看懂些什么呢?

引导学生交流:吐鲁番盆地比海平面低155米。

教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?

学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)

教师追问:你是怎么想到用这种方法来记录的呢?

最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。

教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。

(2)巩固练习:教科书第88页试一试。

3.小组讨论,归纳正数和负数。

教师:通过刚才的学习,我们收集到了一些数据,(显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?

提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。

小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)

通常正号可以省略不写。负号可以省略不写吗?为什么?

最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)

三、运用新知,课堂作业

1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。

2.课堂活动第2题。同桌先讨论,然后反馈。

四、小结

同学们,今天我们认识了负数。你有什么收获?

五、课堂作业

练习二十二第1、4题。

家庭作业:练习二十二第2、3题。

板书设计:

负数的初步认识

正数:20、22、14、 +8844.43…

0:既不是正数也不是负数

负数:-2、-30、-10、-15、-155…

六年级下册数学教案人教版2021模板2

教学内容:

课本第57——58页“扇形统计图“。

教学目标:

1、通过实例,认识扇形统计图,了解扇形统计图的特点与作用。

2、能读懂扇形统计图,从中获取有效信息,体会统计图在现实生活中的作用。

3、提高学生的实际应用能力。

教学重点:

认识扇形统计图,了解扇形统计图的特点与作用。

教学难点:

学生的实际应用能力的提高。

教具准备:

课件

教学过程:

一、复习旧知,引入新知

1、电脑课件呈现下表

种 类 摄入量/克 占总摄入量的百分比

油脂类 50

奶类和豆类 450

鱼、禽、肉、蛋等类 600

蔬菜和水果类 900

谷类 1800

2、电脑课件呈现统计图(或以学生的作品亦可)。

3、引入新知。

二、探索交流,获取新知

1、什么样的统计图是扇形统计图呢?

2、了解扇形统计图特点

3、即时练习。

完成课后的“说一说”。

(1)学生观察课文中的扇形统计图,读一凑统计图中的各类信息。

(2)说一说,你有什么体会。

学生说信息,并计算各种成分的百分比

汇报计算结果,订正

学生发言、交流

学生汇报:条形统计图可以清楚地看到每一种食物的摄入量。

观察,说出获得的信息

根据教师引导说出发现

从扇形统计图中能够清楚地看到各类食物的摄入量占总摄入量的百分之几。

观察数据,发现,说出不同,说出自己的看法

进行计算,订正

三、小结本课学习内容

谈话:这张表是小丽一家三口一天各类食物的摄入量,请你运用条形统计图表示表中的数据。说一说,条形统计图有什么特点?

提问:从条形统计图中,可以清楚地看到每一类食物的摄入量,能看出每一类食物的摄人量占总摄入量的百分之几吗?

揭题,板书课题:扇形统计图。

出示课件一边呈现扇形统计图,一边进行简要讲解,使学生了解扇形统计图是用扇形面积的大小(占圆面积的百分之几)来表示各类数量的多少。(占总摄人量的百分之几)

四、巩固升华

完成课后“试一试”。

1、比较各项活动时间,说一说有什么不同。提出数学问题

2、总时间是多少?各项活动时间可以怎么计算?

3、参照题目,画一个扇形统计图表示自己一天的作息时间,并和同学进行交流。

五、全课小结:你今天有什么收获?还有什么不懂的地方?

板书设计:

扇形统计图

能清楚地反映整体与部分的关系。

六年级下册数学教案人教版2021模板3

教学内容:

自主学习天地P57-58练习题

教学目标:

1、通过练习,进一步巩固复式条形统计图与复式折线统计图的知识。

2、从统计图中获取尽可能多的信息,体会数据的作用。 3、进一步学习制作复试折线统计图,培养学生动手操作能力,分析能力和合作能力。 教学重点:从统计表里收集信息,并能用这些信息分析问题。

教学难点:

如何根据信息绘制统计图

教学过程:

一、基础练习,全班交流

1、练功房。

基础练习,了解统计图的种类。分辨什么数据用什么统计图描述更清楚更直观。

2、智慧树

(1) 这是什么统计图?

(2) 分析图中的数据,回答问题。

(3) 第3题,你能知道哪些信息?

3、实践大本营

提高练习。

让学生选择一题来绘制统计图

(1) 绘制统计图需要哪些数据?

(2) 绘制统计图你需要注意什么?

学生独立完成后,集体订正。

二、变式练习题

课件出示练习题。

学生看题,先集体分析题目,一起探讨数学问题。

1、这是什么统计图?

2、你能解决这些问题吗?

3、你知道了哪些信息?

4、你还有什么疑问?

教学小结:

通过这次练习,你有什么收获? 通过练习,进一步巩固结复式统计图的理解与掌握

通过自主交流与探索, 让学生自主选择。

六年级下册数学教案人教版2021模板4

教材分析:

在学习本单元的内容之前,学生已经在第一、二学段学习了前后、上下、左右等表示物体具体位置的知识,也学习了简单的路线等知识。这些知识为学生进一步认识物体在空间的具体位置打下了基础。而本单元的学习则是第一、二学段学习内容的发展,它对提高学生的空间观念,认识生活周围的环境,都有较大的作用。

教材从学生自己十分熟悉的座位表着手,通过说一说张亮的座位,引出第几组与第几个的话题。接着,再从第几组第几个引出抽象的数对表示方法。这一从学生的经验中,逐步抽象出数学的表示方法,符合学生的由具体到抽象、由特殊到一般的数学认知规律。有助于学生理解“数对”在确定位置中的作用。

教学目标:

1.在具体的情境中,能在方格纸上用数对确定位置。

2.通过具体的情境,理解数对对确定位置的作用,并能根据数对确定物体的位置。

教学重点:

掌握确定位置的方法,说出某一物体的位置。

教学难点:

在方格纸上用"数对"确定位置。

教学过程:

一、活动一:活动引入,认识数对

1、明确列、行排列规则

(1)学生按座位卡找座位。

位置卡

第 _列,第 _

学生可能出现

A、找不到座位。

B、两人找到了同一个座位。

(2)请同学说说找座位的方法,明确排与列的数法。

我们把竖排叫做列,确定第几列一般从左往右数,引导生按列报数;横排叫做行,确定第几行一般从前往后数,引导生按行报数。

(3)重新找自己的座位。

(4)班长坐在第几列第几行?(同时板书)

2、体会学习数对的必要,认识数对

(1)用学生自己喜欢的简便的方法表示班长的位置,可以是数字,也可以是符号。(学生板演表示的多种形式)

这么多的方法都对不对呢?你有什么意见?

(2)在数学上就有一种“统一的方法”可以既清楚又简便的表示位置。

班长的位置3列2排就可以用(3,2)来表示。

(3)你在教室里的位置是第几列第几行?用数对怎样表示?小组交流。

小结:根据两个数组成的数对,能很快确定教室里每个人的位置。

生活中有没有运用数对解决的问题呢?

3、生活中应用数对

(1)根据位置写数对

①出示哈尔滨旅游景点的分布图。

你能表示出各个景点在图中的位置吗?

②独立书写,全班交流。

(2)根据数对找位置

①出示残缺的太阳岛景点分布图。

你能帮忙把地图补充完整吗?

②学生操作后交流。

得出:表示同一行中景点位置的数对,它们的第二个数相同;表示同一列中景点位置的数对,它们的第一个数相同。一个数能准确说出一个地点的位置吗?数对中的两个数能帮助我们很快在平面图上找到某个具体的地点。

二、活动二:学生小结

学习了确定位置,你有什么收获?

三、活动三:课外引申——数对在国际象棋中的运用。

1、课件出现国际象棋棋盘和棋子

(1)介绍:国际象棋的棋盘是一个正方形,等分为六十四方格。这些方格有深浅两种颜色,交替排列。国际象棋的八条直线分别用a、b、c、d、e、f、g、h表示,八条横线分别用1、2、3、4、5、6、7、8表示。每个方格便有了自己的名字。国际象棋的棋子有黑白两色,各有一个王、一个后、两个车、两个象、两个马和八个兵。

(2)如果白王所处的位置用国际象棋专用的方法记录为g2,你知道是用什么方法记录棋的位置的吗?

(3)课件出现三枚棋子在棋盘上的不同位置,问:其他棋各在什么位置?

(4)如果有一枚棋走一步记录为C6—C2,你知道是哪枚棋从什么位置走到什么位置上吗?

四、活动四:游戏——摆子连线

比赛规则:每3人一个小组,第一个学生先掷两次骰子。假如第一次是2,第二次是4,就将自己的棋子放在(2,4)的位置上(说明:棋子用一点来表示)。

第二个学生接着同样的操作,按所掷的点数放棋子。如果位置被其他棋子占了,可以重新再掷。

另外的一个学生负责记录。

每放对一个棋子加1分、如果你将两个棋子连在一起就奖2分,3个棋子连在一起就奖3分,依此类推,将你们俩的得分记录在一张纸上、谁先得8分,谁就赢了。(学生操作,教师下去巡视)

活动五:全课总结

刚才,我们是怎样探究总结出用数对表示位置的方法的?

板书设计:

位 置

六年级下册数学教案人教版2021模板5

教学目标:

1、理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

2、培养学生大胆猜测,勇于实践的思维品质。

教学重点:

会进行分数的混合运算,运用运算定律进行简便计算。

教学难点:

灵活运用运算定律进行简便计算。

教具准备:

多媒体课件。

教学过程:

一、导入新课(激发兴趣,明确目标)

1、运算定律。

我们在四年级时学习过乘法的运算定律,同学们还记得吗?

(学生回答,教师板书运算定律)

乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c

2、这些运算定律有什么用处?你能举例说明吗?

25×7×4 0.36×101

(学生口述自己是怎样应用乘法的运算定律简算上面各题的。)

二、自主探究(自主学习,探讨问题)

1、引入

同学们应用乘法的运算定律,可以使整数、小数的一些计算简便,这些运算定律能不能应用到分数乘法中呢?今天这节课我们就来共同研究这个问题。

(板书课题:整数乘法的运算定律能否推广到分数乘法)

2、推导运算定律是否适用于分数。

(1)学生发表对课题的见解。

(2)验证

有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(学生小组合作学习)

3、教学例5.

(1)出示: ,学生小组合作独立解答。

4、教学例6.

(1)出示: ,学生小组合作独立计算。

(2)小组汇报学习成果,说一说你们组应用了什么运算定律。

5、小结

应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点想应用什么定律可以使计算简便。

三、拓展总结(应用拓展,盘点收获)

1、完成练习三的第6题。

学生说一说应用了什么运算定律。

2、完成课本第10页的“做一做”题目。

其中第2题引导学生讨论解题思路,把87改成“86+1”应用乘法分配律计算比较简便。

3、总结

这节课你有什么收获?