高三物理学科教学设计

马振华老师

高三的日子是苦的,有刚入高三时的迷茫和压抑,有成绩失意时的沉默不语,也有在清晨凛冽的寒风中上学的艰苦经历。在奋笔疾书中得到知识的快乐,也是一种在巨大压力下显得茫然无助的痛苦。接下来是关于高三物理学科教学设计的文章,希望能帮助到大家!

高三物理学科教学设计1

一.教材简析

本节课力的合成,是在学生了解力的基本性质和常见几种力的基础上,通过等效替代思想,研究多个力的合成方法,是对前几节内容的深化。

本节重点介绍力的合成法则——平行四边形定则,但实际这是所有矢量运算的共同工具,为学习其他矢量的运算奠定了基础。

更重要的是,力的合成是解决力学问题的基础,对今后牛顿运动定律、平衡问题、动量与能量问题的理解和应用都会产生重要影响。

因此,这节课承前启后,在整个高中物理学习中占据着非常重要的地位。

二、教学目标定位

为了让学生充分进行实验探究,体验获取知识的过程,本节内容分两课时来完成,今天我说课的内容为本节内容的第一课时。根据上述教材分析,考虑到学生的实际情况,在本节课的教学过程中,我制定了如下教学目标:

一、知识与技能

.理解合力、分力、力的合成的概念.理解力的合成本质上是从等效的角度进行力的替代.

.探究求合力的方法——力的平行四边形定则,会用平行四边形定则求合力.

二、过程与方法

.通过学习合力和分力的概念,了解物理学常用的方法——等效替代法.

.通过实验探究方案的设计与实施,体验科学探究的过程。

三、情感态度与价值观

.培养学生的合作精神,激发学生学习兴趣,形成良好的学习方法和习惯.

.培养认真细致、实事求是的实验态度.

根据以上分析确定本节课的重点与难点如下:

一、重点

.合力和分力的概念以及它们的关系.

.实验探究力的合成所遵循的法则.

二、难点

平行四边形定则的理解和运用。

三、重、难点突破方法——教法简介

本堂课的重、难点为实验探究力的合成所遵循的法则——平行四边形定则,为了实现重难点的突破,让学生真正理解平行四边形定则,就要让学生亲自体验规律获得的过程。

因此,本堂课在学法上采用学生自主探究的实验归纳法——通过重现获取知识和方法的思维过程,让学生亲自去体验、探究、归纳总结。体现学生主体性。

实验归纳法的步骤如下。这样设计让学生不仅能知其然,更能知其所以然,这也是本堂课突破重点和难点的重要手段。

本堂课在教法上采用启发式教学——通过设置问题,引导启发学生,激发学生思维。体现教师主导作用。

四、教学过程设计

采用六环节教学法,教学过程共有六个步骤。

教学过程第一环节、创设情景导入新课:

安排两个同学共提一桶水,再请全班力气的同学来提这一桶水,游戏虽简单,但能迅速调动学生参与课堂的积极性。然后用图片引导学生通过作用效果相同得出合力与分力的概念。由此引出——

第二环节、新课教学:

展示合力与分力以及力的合成的概念,强调等效替代法。举例说明等效替代法是一种重要的物理方法。

那么如何来求合力呢?先简单回顾初中所学同一直线上两个力的合成方法:直接加减即可。再通过设置三个问题激发学生思维,引导学生猜想合力与分力究竟是什么关系呢?学生猜想五花八门,产生思维冲突,怎么办呢?学生自然会想到通过实验来寻求问题答案。由此引出——

第三环节、合作探究:

首先,教师展示实验仪器,让学生思考如何设计实验,,如何进行实验呢?学生面对器材可能会觉得无从下手。再次设置问题引导学生思维,让学生面对仪器分组讨论以下四个问题。

问题1要用动画辅助说明。在问题2中,教师要强调结点的问题,用动画说明。问题3中,直观简洁的描述力必须用力的图示,用图片说明。问题4让学生注意测力计的使用,减小实验误差。通过对这四个问题的讨论,再结合多媒体动画的展示,使学生对探究的步骤清晰明了。

然后,学生分组实验,合作探究,记录合力与两分力的大小和方向,作出力的图示。实验完成后请学生展示实验结果,应该立即可得出结论一:比较分力与合力的大小,可得互成角度的两个力的合成,不能简单地利用代数方法相加减.

那合力与分力到底满足什么关系呢?

此时要引导学生思考:既然从数字上找不到关系,哪可不可以从几何上找找关系呢?学生会立即猜想出O、A、C、B像是一个平行四边形的四个顶点,OB可能是这个平行四边形的对角线.哪么猜想是否正确呢?亲自实践才有发言权,学生动手作图:以OA、OC为邻边作平行四边形OACB,看平行四边形的对角线与OB是否重合。

学生作图后发现对角线与合力很接近。教师说明实验的误差是不可避免的,科学家经过很多次的、精细的实验,最后确认对角线的长度、方向,跟合力的大小、方向一致,说明对角线就表示F1和F2的合力.由此得到结论二:力的合成法则——平行四边形定则。

进入

第四环节:归纳总结

高三物理学科教学设计2

教学目标

知识目标

1、知道涡流是如何产生的;

2、知道涡流对我们的不利和有利的两个方面,以及如何防止和利用;

情感目标

通过分析事例,培养学生全面认识和对待事物的科学态度.

教学建议

本节是选学的内容,它又是一种特殊的电磁感应现象,在实际中有很多应用,比如:发电机、电动机和变压器等等.所以可以根据实际情况选讲,或者知道学生阅读.什么是涡流是本节课的重点内容.

涡流和自感一样,也有利和弊两个方面.教学中应该充分应用这些实例,培养学生全面认识和对待事物的科学态度.

教学设计方案

一、引入:引导学生观察发电机、电动机和变压器(可用事物或图片)

提出问题:为什么它们的铁芯都不是整块金属,而是由许多相互绝缘的薄硅钢片叠合而成?

引导学生看书回答,从而引出涡流的概念:什么是涡流?

把块状金属放在变化的磁场中,或者让它在磁场中运动时,金属块内将产生感应电流,这种电流在金属块内自成闭合回路,很象水的旋涡,因此叫做涡流.

整块金属的电阻很小,所以涡流常常很大.

(使学生明确:涡流是整块导体发生的电磁感应现象,同样遵守电磁感应定律.)

二、涡流在实际中的意义是什么?

⑴为什么电机和变压器通常用相互绝缘的薄硅钢片叠合而成,就可以减少涡流在造成的损失?

⑵利用涡流原理制成的冶炼金属的高频感应炉有什么优点?

电学测量仪表如何利用涡流原理,方便观察?

提出上述问题后,让学生看书、讨论回答

三、作业:让学生业余时间到物理实验室观察电度表如何利用涡流,写出小文章进行阐述.

高三物理学科教学设计3

一、教学任务分析

匀速圆周运动是继直线运动后学习的第一个曲线运动,是对如何描述和研究比直线运动复杂的运动的拓展,是力与运动关系知识的进一步延伸,也是以后学习其他更复杂曲线运动(平抛运动、单摆的简谐振动等)的基础。

学习匀速圆周运动需要以匀速直线运动、牛顿运动定律等知识为基础。

从观察生活与实验中的现象入手,使学生知道物体做曲线运动的条件,归纳认识到匀速圆周运动是最基本、最简单的圆周运动,体会建立理想模型的科学研究方法。

通过设置情境,使学生感受圆周运动快慢不同的情况,认识到需要引入描述圆周运动快慢的物理量,再通过与匀速直线运动的类比和多媒体动画的辅助,学习线速度与角速度的概念。

通过小组讨论、实验探究、相互交流等方式,创设平台,让学生根据本节课所学的知识,对几个实际问题进行讨论分析,调动学生学习的情感,学会合作与交流,养成严谨务实的科学品质。

通过生活实例,认识圆周运动在生活中是普遍存在的,学习和研究圆周运动是非常必要和十分重要的,激发学习热情和兴趣。

二、教学目标

1、知识与技能

(1)知道物体做曲线运动的条件。

(2)知道圆周运动;理解匀速圆周运动。

(3)理解线速度和角速度。

(4)会在实际问题中计算线速度和角速度的大小并判断线速度的方向。

2、过程与方法

(1)通过对匀速圆周运动概念的形成过程,认识建立理想模型的物理方法。

(2)通过学习匀速圆周运动的定义和线速度、角速度的定义,认识类比方法的运用。

3、态度、情感与价值观

(1)从生活实例认识圆周运动的普遍性和研究圆周运动的必要性,激发学习兴趣和求知欲。

(2)通过共同探讨、相互交流的学习过程,懂得合作、交流对于学习的重要作用,在活动中乐于与人合作,尊重同学的见解,善于与人交流。

三、教学重点难点

重点:

(1)匀速圆周运动概念。

(2)用线速度、角速度描述圆周运动的快慢。

难点:理解线速度方向是圆弧上各点的切线方向。

四、教学资源

1、器材:壁挂式钟,回力玩具小车,边缘带孔的旋转圆盘,玻璃板,建筑用黄沙,乒乓球,斜面,刻度尺,带有细绳连接的小球。

2、课件:flash课件——演示同样时间内,两个运动所经过的弧长不同的匀速圆周运动;——演示同样时间内,两个运动半径所转过角度不同的匀速圆周运动。

3、录像:三环过山车运动过程。

五、教学设计思路

本设计包括物体做曲线运动的条件、匀速圆周运动、线速度与角速度三部分内容。

本设计的基本思路是:以录像和实验为基础,通过分析得出物体做曲线运动的条件;通过观察对比归纳出匀速圆周的特征;以情景激疑认识对匀速圆周运动快慢的不同描述,引入线速度与角速度概念;通过讨论、释疑、活动、交流等方式,巩固所学知识,运用所学知识解决实际问题。

本设计要突出的重点是:匀速圆周运动概念和线速度、角速度概念。方法是:通过对钟表指针和过山车两类圆周运动的观察对比,归纳出匀速圆周运动的特征;设置地月对话的情景,引入对匀速圆周运动快慢的描述;再通过多媒体动画辅助,并与匀速直线运动进行类比得出匀速圆周运动的概念和线速度、角速度的概念。

本设计要突破的难点是:线速度的方向。方法是:通过观察做圆周运动的小球沿切线飞出,以及由旋转转盘边缘飞出的红墨水在纸上的径迹分布这两个演示实验,直观显示得出。

本设计强调以视频、实验、动画为线索,注重刺激学生的感官,强调学生的体验和感受,化抽象思维为形象思维,概念和规律的教学体现“建模”、“类比”等物理方法,学生的活动以讨论、交流、实验探究为主,涉及的问题联系生活实际,贴近学生生活,强调对学习价值和意义的感悟。

完成本设计的内容约需2课时。

六、教学流程

1、教学流程图

2、流程图说明

情境I录像,演示,设问1

播放录像:三环过山车,让学生看到物体的运动有直线和曲线。

演示:让学生向正在做直线运动的乒乓球用力吹气,体验球在什么情况下将做曲线运动。

设问1:物体在什么情况下将做曲线运动?

情境II观察、对比,设问2

观察、对比钟表指针和过山车这两类圆周运动。

高三物理学科教学设计4

教学目标

知识目标

1、知道什么是光疏介质和光密介质,理解光的全反射现象,掌握发生全反射的条件.

2、理解临界角的物理意义,会根据公式确定光从介质射入真空(空气)时的临界角.

能力目标

能判断是否发生全反射,并能解决有关的问题.

能运用全反射的知识分析和解释一些简单的现象了解光的全反射在光导纤维上的应用.

情感目标

1、通过这部分知识的学习,使学生对自然界中许多美好的现象进行充分的认识,学会用科学知识来解释自然现象.

2、了解我国光纤技术的进展以及光导纤维在现代科技中的应用,培养爱国主义热情和科学态度.

教学建议

1、初中没有学过全反射,它对学生是一种新现象.建议作好演示实验,使学生清楚地认识全反射现象,知道在什么条件下发生全反射.

2、全反射现象是生活中常遇到的,要让学生认识并掌握全反射现象产生的条件:一是光由光密介质进入先疏介质,二是入射角大于,或等于临界角.要让学生正确理解“光密”和“光疏”的概念,要知道“密”和“疏”是相对而言的,并且要注意不要把其与介质的密度混同起来.

3、要让学生正确理解临界角的概念、这就要做好演示实验,要让学生看到:

①折射角随入射角的增大而增大,入射角增大到某一角度时折射角趋近于90°,再增大入射角,光密介质中的折射光消失.

②随着入射角和折射角的增大,反射光的亮度不断增强,折射光的亮度不断减弱,当折射光消失时,反射光.

4、要让学生会用全反射的知识对一些生活中的全反射现象进行分析.建议介绍一下光导纤维可以将市场出售的纤维饰品让学生看一下以得到感性认识,加深理解.

讲过全反射之后,建议小结一下,说明光射到透明介质界面上时,一般来说,同时发生反射和折射,只有发生全反射时没有折射光线.

'

--示例

全反射

(-)引入新课

通过光的折射实验演示折射角和入射角的大小关系,然后由光的可逆性推断可能发生的现象,并用实验证实全反射现象.

(二)教学过程

1、做好演示实验:光的折射和光的全反射实验.

2、带领学生分析发生全反射的条件:

光由光疏介质进入光密介质时,折射角小于入射角,不会发生全反射,而光由光密介质进入光疏介质时,折射角大于入射角,随着入射角的增大,折射角先达到90°,就发生了全反射现象.

入射角必须大于一定的角度:临界角

强调:

全反射:光照射到两种介质的界面上,光线全部反射回原介质的现象叫全反射.

a、产生全反射的条件:①光线从光密介质射向光疏介质;②入射角大于或者等于临界角.

b、当光线从光密介质射入光疏介质,在入射角逐渐增大的过程中,反射光的能量逐渐增强,折射光的能量逐渐减弱,当入射角等于临界角时,折射光的能量已经减弱为零,发生了全反射.

c、当光由光密介质射火光疏介质时,应先判断会不会发生全反射.为此应画出入射角等于临界角的光路,然后再根据折射定律或反射定律进行定量计算或动态分析.

3、棱镜:通常指截面是三角形的三棱镜.

探究活动

(一)

1. 利用光的全反射的有关知识自制光导纤维.2. 查阅资料,了解我国光纤的发展和过程.

(二)

实验研究:

题目:“海市蜃楼”实验模拟

内容:本实验的关键在于配置密度分布不均匀的蔗糖溶液,做法如下:先在玻璃缸析出时为止,这样就配置了浓度很高的蔗糖溶液,再在蔗糖溶液上面缓慢加入清水,加入清水时要注意不能让溶液与清水混合。过1~2天后,由于蔗糖分子内扩散,在玻璃缸中就形成了密度分布布均匀的蔗糖溶液,当光在其中传播时,可清晰的看到溶液中弯曲的光路,如图所示。

建议:配置溶液工作应提前1~2天完成,不宜太早,也不宜太晚。

高三物理学科教学设计5

康普顿效应

三维教学目标

1、知识与技能

(1)了解康普顿效应,了解光子的动量

(2)了解光既具有波动性,又具有粒子性;

(3)知道实物粒子和光子一样具有波粒二象性;

(4)了解光是一种概率波。

2、过程与方法:

(1)了解物理真知形成的历史过程;

(2)了解物理学研究的基础是实验事实以及实验对于物理研究的重要性;

(3)知道某一物质在不同环境下所表现的不同规律特性。

3、情感、态度与价值观:领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。

教学重点:实物粒子和光子一样具有波粒二象性

教学难点:实物粒子的波动性的理解。

教学方法:教师启发、引导,学生讨论、交流。

教学用具:投影片,多媒体辅助教学设备

(一)引入新课

提问:前面我们学习了有关光的一些特性和相应的事实表现,那么我们究竟怎样来认识光的本质和把握其特性呢?(光是一种物质,它既具有粒子性,又具有波动性。在不同条件下表现出不同特性,分别举出有关光的干涉衍射和光电效应等实验事实)。

我们不能片面地认识事物,能举出本学科或其他学科或生活中类似的事或物吗?

(二)进行新课

1、康普顿效应

(1)光的散射:光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫做光的散射。

(2)康普顿效应

1923年康普顿在做 X 射线通过物质散射的实验时,发现散射线中除有与入射线波长相同的射线外,还有比入射线波长更长的射线,其波长的改变量与散射角有关,而与入射线波长和散射物质都无关。

(3)康普顿散射的实验装置与规律:

按经典电磁理论:如果入射X光是某种波长的电磁波,散射光的波长是不会改变的!散射中出现 的现象,称为康普顿散射。

康普顿散射曲线的特点:

① 除原波长 外出现了移向长波方向的新的散射波长

② 新波长 随散射角的增大而增大。波长的偏移为

波长的偏移只与散射角 有关,而与散射物质种类及入射的X射线的波长 无关,

= 0.0241?=2.41×10-3nm(实验值)

称为电子的Compton波长

只有当入射波长 与 可比拟时,康普顿效应才显著,因此要用X射线才能观察到康普顿散射,用可见光观察不到康普顿散射。

(4)经典电磁理论在解释康普顿效应时遇到的困难

①根据经典电磁波理论,当电磁波通过物质时,物质中带电粒子将作受迫振动,其频率等于入射光频率,所以它所发射的散射光频率应等于入射光频率。

②无法解释波长改变和散射角的关系。

(5)光子理论对康普顿效应的解释

①若光子和外层电子相碰撞,光子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长。

②若光子和束缚很紧的内层电子相碰撞,光子将与整个原子交换能量,由于光子质量远小于原子质量,根据碰撞理论, 碰撞前后光子能量几乎不变,波长不变。

③因为碰撞中交换的能量和碰撞的角度有关,所以波长改变和散射角有关。

(6)康普顿散射实验的意义

①有力地支持了爱因斯坦“光量子”假设;

②首次在实验上证实了“光子具有动量”的假设;③证实了在微观世界的单个碰撞事件中,动量和能量守恒定律仍然是成立的。

2、光的波粒二象性

讲述光的波粒二象性,进行归纳整理。

(1)我们所学的大量事实说明:光是一种波,同时也是一种粒子,光具有波粒二象性。光的分立性和连续性是相对的,是不同条件下的表现,光子的行为服从统计规律。

(2)光子在空间各点出现的概率遵从波动规律,物理学中把光波叫做概率波。

3、光的波动性与粒子性是不同条件下的表现:

大量光子行为显示波动性;个别光子行为显示粒子性;光的波长越长,波动性越强;光的波长越短,粒子性越强。光的波动性不是光子之间相互作用引起的,是光子本身的一种属性。

例题:已知每秒从太阳射到地球上垂直于太阳光的每平方米截面上的辐射能为1.4×103J,其中可见光部分约占45%,假设认为可见光的波长均为0.55μm,太阳向各个方向的辐射是均匀的,日地之间距离为R=1.5×1011m,估算出太阳每秒辐射出的可见光的光子数。(保留两位有效数字)