大学数学选修课心得

孙小飞老师

数学选修课心得1

在没接触《数学文化》这门课程之前我就经常听我朋友说有关这门课程的东西,那时候我一直以为跟我们所学的高数、线性代数一样枯燥无味。直到真正去上了这门课程之后,我才发觉跟我一开始想的完全不一样。

在《数学文化》的课堂上,老师的授课方式很有趣,每个专题各有特色,在听老师的详细讲述后,我对数学文化颇有兴趣,深有感触,特别是“混沌”和“维数”这两个专题。

我觉得老师对“混沌”和“维数”这两个专题见解独到,我也能从中吮吸到一定的精华。这两个专题所涉及的内容也让我很感兴趣。

关于“混沌”,一开始对这两个字根本不了解。还误以为跟“馄饨”有一定关系,直到听了老师仔细的讲述,我才真正明白了“混沌”的含义。其实它也是数学文化中的一个方面,在非线性科学中,混沌现象指的是一种确定的但不可预测的运动状态。它的外在表现和纯粹的随机运动很相似,即都不可预测。但和随机运动不同的是,混沌运动在动力学上是确定的,它的不可预测性是于运动的不稳定性。或者说混沌系统对无限小的初值变动和微扰也具于敏感性,无论多小的扰动在长时间以后,也会使系统彻底偏离原来的演化方向。上了关于“混沌”这个专题后,我第一个想到的典例就是天气变化,我觉得它很形象地形容了天气变化的特性,其中最著名的表述就是蝴蝶效应:南美洲一只蝴蝶扇一扇翅膀,就会在佛罗里达引起一场飓风。在今天计算机技术飞速发展的时代,混沌学已发展成为一门影响深远、发展迅速的前沿科学,同时也跟我们的日常生活息息相关。

而另外一个专题就是“维数”,对于这个专题我比较熟悉,因为在之前的数学课堂上便有接触关于一维、二维···甚至n维,不过在学的时候不是重点章节,数学老师也没有给我们做深入的讲解,直到上了数学文化这门课,老师给我们做了一个专题方便我们更系统地了解“维数”这一概念。所谓“维数”,又称维度,是数学中独立参数的数目。在物理学和哲学的领域内,指独立的时空坐标的数目。之前还不知道维数有那么多讲究,现在才真正明白每个维数所代表的含义,0维是一点,没有长度。一维是线,只有长度。二维是一个平面,是由长度和宽度形成面积。三维是二维加上高度形成体积面。四维分为时间上和空间上的四维,人们说的四维经常是指关于时间的概念。准确来说,四维有两种。第一种是四维时空,指三维空间加一维时间。另一种便是四维空间,只指四个维度的空间。四维运动产生了五维...虽然“维数”比较抽象,但是在我们的实际生活中,也有一些相关领域把一个常用和熟知的有限维数的结果推广到无限维数的情形,对我们也有一定的实用意义。

在数学文化这门课程中,我受益匪浅,老师别样的讲课风格以及详细的课件内容让我对数学文化这个博大精深的领域兴致勃发,在学习了关于“混沌”和“维数”这两个专题之后,使我更加想了解更多有关数学文化的想法,对我们来说,虽然数学文化很抽象,但是对我们的实际生活却很有影响。

我觉得,在这门课程结束之后,我依然会更深入地去了解有关数学文化方面的知识,因为深受老师的熏染,我更渴望去了解相关知识。

总而言之,我很荣幸抢到了数学文化这门课,更荣幸的是有这样一位老师传授了很多有趣的关于数学方面又涉及实际生活的知识。辛苦了,谢谢老师这学期的辛勤教导!

数学选修课心得2

我们从小学就开始学习数学,一直学到高中。上了大学,还要学习高等数学。高数作为一门重要的基础课程,是所有大一新生的必修课,也是考研的科目。

高等数学与高中数学相比有很大的不同,内容上主要是引进了一些全新的数学思想,特别是无限分割逐步逼近,极限等。从形式上讲,学习方式也很不一样,一般都是大班授课,进度快,老师很难做到个别辅导,所以对自学能力的要求很高。

我一直很重视高数的学习,上课认真听讲,记好笔记,课后做练习题。这学期还报了高数选修课,不仅是因为学分多,更可以多学一点知识。

老师把前面学的知识,按章节总结题型,讲解解题技巧,并配有难一点的考研题或是竞赛题。

刚开始时,高数选修课很火爆,很多没报名的同学也来听课,导致我们只能坐在后面几排,他们上课听讲很是认真,笔记记得也很详细,老师的提问总是很快地就回答出来。为了不输给他们,我们中午就去占前排的座位,上课认真记笔记,目不转睛地看着老师。

这学期的高数明显难与上学期的内容,但为了通过考试,为了考研,必须打起12分的精神努力学习。

高数有别于其他科目,这就要求我们有很高的思维性和理解力,与此同时,也要不停地做题和总结。我们学习高数有一个共通的地方,就是我们在高中时期学习数学养成了一种固定的模式,就是按照老师给定的格式,给定的思维去思考问题。但是在大学,我们面对的是高数,有时证明某种定理就需要很长时间,在做题中还会遇到各种各样的问题,很多事情都需要我们自己去完成。正是由于这段时间的高数学习,培养了我们自学和总结的能力。

高数当中我们会经常遇到很细的知识点,具体说就是惯例中的特例,那些先人总结出的各种定理,我们都喜欢用,甚至遇到类似的情况就生搬硬套,而忽略了很多条件,不但不利于我们对知识的掌握,还会起到负面作用,就是错误理解,导致相关知识都会变得相当混乱。只有深刻理解知识,了解它所能应用的条件和环境,之后才去实战中应用。而我们的重点就是在做题中总结,不断地增长自己的经验,培养自己解决问题的能力和更高的思维能力。

学习高数很重要的一点就是联系,我们看到有很多东西表面上是分散的,而且是独立的,但是这其中都是紧密联系的。我们开始学极限,微分,积分,以及微分方程,多元函数积分,多重积分,曲线曲面积分,这些知识都是紧密地联系的,是逐层递进的。极限是高数的基础,所以一开始我们就先学习极限。关系是明朗的而且清晰的,我们学习只需要着重把握各章重点,做好联系就可以了。

学好高数,我认为,一定要把教材看懂,尤其是小结的部分,可以使你的学习目的更明确,做到有的放矢,不必花太多时间在次要的内容上。每看完一章就反复琢磨书后的小结,找准重点后再重新把书中的重点知识学习第二遍,力求一定掌握重点知识,并会做相应的习题。其次,一定要把书后的练习题做一遍,适当使用参考书,因为只有不断的练习,才能提高解题速度,并熟练记住公式。做完之后再对着书后的答案检查,什么地方做错了,通过分析就可以尽量避免在考试时犯同样的错误。对于书中不会做的题目或者是看不懂的例题,一定要及时向同学、老师请教,直到弄明白为止。

考试前的一个月,就做前几年考试的试题,了解一下考试出题的类型和哪一部分内容在考试中占的分数比较多,对于分数少而又比较难的部分,在时间不够的情况下可以有选择地放弃。

考试时,一定要细心,会做的题,一定要拿满分。很多学长就是差几分没能通过,其中一个重要原因,就是会做的题,由于种种原因,没有拿满分。这一点虽然是老生常谈的问题,却是我们最容易忽视的一点,也是最关键的一点,如果我们在这一点上失误了,就可能前功尽弃。

此外,提高45分钟课堂效率,上课认真听讲,记好笔记。这一点看似平常,但做好并不容易,因为我们学习的大部分时间都是在课堂上,如果不能很好地抓住课堂时间,而寄希望于课下去补,则会使学习效率大打折扣。我们会有困的时候,会有心情不好的时候,还会受到其他同学的的影响。听课时,更不可挑挑捡捡,会的不听,不会的才听。会的地方,听听老师深刻独到的见解,加深对知识的理解。不光要记老师的板书,更要记老师讲课时对解题思路的讲解,因为老师不可能把所有的思路都以板书的形式呈现出来。实际上,学高数就是学各种题型的解题思路。

学习是个循序渐进的过程,只有平时一点一滴地积累,不断夯实基础,才能学好高数,才能达到比较高的层次,统观全局。切记“一分耕耘,一分收获”。

下周高数选修课就要结束了,在10周的课上,老师把以前的知识给我们复习了一遍,还学到一些技巧,并做了一些有难度的题,开拓了思路,让我们认识到自己的不足,明确了自己的目标,可谓收获颇丰。

数学选修课心得3

当时选选修课的时候,我很犹豫要不要选数学提高班,因为选修课在我心目中一直是以培养兴趣爱好为目的的,好像并不关学习什么事,我本人也不是特别喜欢数学。但是在母上大人的督促下我还是抱着试一试的态度选了。所以大概来说我选数学提高班这门选修课的时候抱着提高数学成绩的目的选的,虽然其实在成绩上的长进并不那么明显,但是提高班确实让我获得了许多学习数学的乐趣和方法。在一学期的选修课中,我们大致按照数学行课顺序和速度,一章接一章的复习了不等式,立体几何等等很多章节。其中我对立体几何的印象最深,可能也是因为自己比较喜欢吧,所以收获也比较多。

另外就是我对数学的态度。从小到大我都不喜欢数学,从来没有喜欢过,可是又迫于应试教育的无奈,补了很多课,却都不济于是。我从来没有想过我这辈子可能会有那么一点喜欢数学,但是我确实这样做了。大概是从学习立体几何开始,我慢慢发现其实数学也是很有趣的。从这个时候开始,我也是第一次从心底里开始想上提高班,也是获益的开始。提高班上,我不仅复习了课堂上的知识,弥补了漏洞还学习了方法收获了快乐。

提高班是一个很好的与老师和同学交流数学问题的平台。平时或许没有时间和精力去深究一个数学问题,提高班就提供了一个良好的时间,让大家畅所欲言,发现新知,同时又有老师可以引导大家思考问题,解决问题。这种轻松愉悦的气氛真的可以让我沉浸于数学之中,发现许多数学与我的契合点,从而发现快乐。总的来说,提高班真的让我获益匪浅,如果还有机会的话,我还愿意选这门选修课。

数学选修课心得4

浅印象里提起数学一词,对于我个人来说,数学就是一堆堆死板无活力的公式,像是一个个严肃的战士,需要各种证明来计算我们课本或者卷纸上的问题。幼稚园时候,数学就是数数,简单的计算,简单到用手指头就能计算出结果;小学时候,数学就是不停的计算鸡鸭鹅狗笼子里多少只脚的问题;初中时候,问题变得多元化,但是从此开始了更没有什么趣味的代数和几何,不停的计算来证明,得分。唯一的一点趣味也无了踪影;高中时候,数学变成了高数,每天脑子里的正余弦定理,一切依旧没了趣味;大学时候,学的依旧叫高数,只是名字由高中数学变成了高等数学,依旧对数学提不起兴趣。无意中选修了这门选修课,却让我收获了另一种看法,一改以往的印象,其实数学是需要欣赏的,数学有它自己的文化和趣味,并不是一门枯燥反反复复的计算。

关于数学我这样理解:数学,用公式的话来解释它就是研究数量.结构.变化及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用。由计数.计算.量度和对物体形状及运动的现象中产生。数学家们拓展这些概念,为了公事新的猜想以及从何时选定的公式及定义中建立起严谨推导出的真理。

虽然说,数学存在着各种逻辑与抽象的问题,但是,这些都掩盖不住数学的没,数学的美不在于表面,而在于它的内在,数学的表面枯燥乏味,但是它的内在却是充满了乐趣。数学的美吸引了许许多多的人们来探索,人们喜欢数学,探索数学,其实就是被数学的美吸引。爱因期坦说过:“美,本质上终究是简单性。”他还认为,只有借助数学,才能达到简单性的美学准则。物理学家爱因期坦的这种美学理论,在数学界,也被多数人所认同。朴素,简单,是其外在形式。只有既朴实清秀,又底蕴深厚,才称得上至美。欧拉给出的公式:v-e+f=2,堪称“简单美”的典范。世间的多面体有多少?没有人能说清楚。但它们的顶点数v、棱数e、面数f,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已?

数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特 的数学文化论力图把数学回归到文化层面。克莱因 的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。 国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。 以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。

课上我们看了个视频,名字记不住了,但是确实很吸引我们,让我们感受到数学确实很重要,我们在不断的实践,无论哪个国家。这是人类的探索。

我们国家是一个数学大国,也是一个数学古国,早在20__多年前,我们的祖先就有“周三经一”的思想,也就是今天人们讲的圆周率π,而西方国家到了17世纪才有这样的概念,陈景润关于“哥德巴赫猜想”的卓越工作,令世界震惊。实际上,我们每一个人,天天都在跟数字打交道。一个人不识字完全可以生活,但是若不识数,就很难生活了,现代科技进步,对数学的要求越来越高,所以我觉得“数学文化”这门课程为我们剖析“数学”这门神秘而又与我们息息相关的科学,对我们来说是获益匪浅的。听讲了几次课后,我觉得我收获蛮多,在老师的带领下,我们在数学的王国里漫游着,学习着,就像参观景点一般浏览了数学世界的

奥秘,数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。

可见数学的发展是一步步发现深化和完善的,我们如同探险者,不断的推翻错误的观点和公式,然后用新的公式代替,最后期待实现真理的目的。数学的神秘和有趣是无尽的,是人们追求的,是人们在高科技现代化所需要的文明产物,可以说上到科学研究,下到吃穿住行没有一个可以完全脱离数学而存在的。它是支撑我们这个多元多彩世界的重要部分,没有它就没有这个丰富的世界。所以通过这门选修课,确实让我对数学有了更深的了解,我不能用以往的印象理解数学,误解数学的美。感谢老师以及数学,让我意识到数学有它独特的美,我们要用欣赏的眼光去看待数学,因为它不仅是一种解决问题的方法,也是一种美丽的文化。

数学选修课心得5

第一次上选修课选科目的时候我就选了“数学文化”,因为当我看到这个名字时,我觉得学到一些数学的周边知识对我的学习与生活可能还是有点用的,所以我报了名。

“数学文化”这门课给我们介绍了很多数学的知识,包括数学的历史、数学的发展等等,我们国家是一个数学大国,也是一个数学古国,早在20__多年前,我们的祖先就有“周三经一”的思想,也就是今天人们讲的圆周率π,而西方国家到了17世纪才有这样的概念,陈景润关于“哥德巴赫猜想”的卓越工作,令世界震惊。实际上,我们每一个人,天天都在跟数字打交道。一个人不识字完全可以生活,但是若不识数,就很难生活了,现代科技进步,对数学的要求越来越高,所以我觉得“数学文化”这门课程为我们剖析“数学”这门神秘而又与我们息息相关的科学,对我们来说是获益匪浅的。

听讲了几次课后,我觉得我收获蛮多,在老师的带领下,我们在数学的王国里漫游着,学习着,就像参观景点一般浏览了数学世界的奥秘,第一堂课的时候,老师就给我们讲了数学的历史:数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。 到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。

除了数学的历史以外,老师还给我们点评了数学史上的一些重大事件,如三次数学危机,这三次数学危机每一次都是数学探索者们在进行对数学这门学科的探索时产生的问题,每次出现了数学危机后,数学家们都努力地对其进行探究,通过各种各样的方法把这些问题解决。那节课让我了解到数学的世界是时时刻刻都会有矛盾的世界,研究数学就是在研究把这些矛盾解决掉或者用正当的理论把矛盾解释清楚的方法。

在这门课上我还第一次真正了解了欧式几何、非欧几何等数学分支以及它们诞生的意义和对人类文明的深刻影响等等很多关于数学的知识,让我第一次了解到在我们这个世界上,任何事物并不一定就像我们平时所看到的那样,三角形的内角和在某种情况下可能小于180°,也可能大

于180°,这些可能暂时对我们的用处还不大,但了解了这些东西对我们以后学好“数学”这门课程或者说研究这门科学有很大的帮助。

我很喜欢老师给我们上的最后一节课,因为在这节课上,老师给我们看了很多由数学分形而制成的各种各样的图像,如Julia集合,一幅幅画面看得我眼花缭乱,仿佛进入了仙境一般,我都无法用言语来形容我当时的感受,那让我明白了原来生活中在衣服上、各种电器的屏保中的那么多美丽的图案都是出自数学这门神秘的学科里,那节课真的让我们体验到了数学的神奇与壮观。

老师的讲述让我慢慢消除了心中对数学这门学科的神秘光环,使我了解了数学,并让我看到了数学的美丽和壮观,还让我对数学——这门把一切事物抽象化的科学产生了浓厚的兴趣。虽然我知道,要学好数学很难,高数的第一学期课程:集合、极限、微积分的题目让我焦头烂额,但我清楚,作为一名计算机专业学生,不了解数学、不学好数学是不行的,我会努力地去学数学这门课程,不单单是学习数学的公式定理,更要学习数学家们坚持不懈、开拓进取的精神。