倍数和因数评课稿

刘莉莉老师

倍数和因数评课稿

倍数和因数评课稿1

  《因数和倍数》这一堂课在各个版本中的内容和学习目标都存在着差异。今天听了《因数和倍数》的不同上法,结合自己先前对教材的认识与设计,现在比较着来谈谈听完课后的一些感想。

  1、新旧链接,揭示概念。

  支老师在充分估计学生思维能力的基础上,运用已有的数学知识,让学生建立了“因数与倍数”的概念。如:课的开始,支老师从操作活动把12个小正方形摆成不同的长方形引入,同时训练孩子的空间思维能力,在不动手操作的情况下,用一个简单的算式表达自己的思维过程。让学生说出不同的乘法算式,从而导出倍数和因数的概念。在概念的揭示过程中。让学生自主体验数与形的结合,进而形成因数与倍数的意义。如当得出2×6=12时,引导学生充分练说,“12是6的倍数,12也是2的倍数,6和2都是12的因数”,让学生读读、想想这几句话的意思,初步感受倍数和因数的意义是与乘法有联系的,表达的是自然数之间的关系;接着要求学生根据12×1=12、3×4=12说说哪一个数是哪一个数的倍数(或因数),在迁移中进一步认识倍数和因数的意义。其中12是12的因数、1是12的因数,12是12的倍数等特例,为后面的教学扫除难点。这一环节借助有意义的操作和想象活动,由形到数,再由数到形,学生自主体验其中的因倍关系,为倍数因数概念的引入打下了坚实的基础,数形结合的思想得到了较好的体现。

  2、找准机会,渗透方法。

  在新知教学中,支老师注重学生的探究,渗透数学思想方法的教学,发展思维。本节课中找一个数的倍数和因数,都有比较好的方法。如何通过学生的探究找到方法,成了教学的亮点。如“找36的因数”,应该说,找出36的几个因数并不难,难就难在找出36的所有因数。36有9个因数,如何有序地一个不漏地找出36的因数,我觉得对于刚刚认识因数概念的学生来说有一定的难度。教学中,支老师并没有急切地认定结果,也没有把方法简单地告诉学生,而是让学生独立探究,在作业纸上独立写出36的所有因数,教师则及时巡视并请学生将各种情况反馈在投影上。有用乘法找的,(有用除法找的,)有有序找的,也有无序找而有遗漏的。教师引导学生对(有序和无序找的)各种方法作了比较,学生在比较、交流中感悟到有序思考的必要性和科学性。这是本节课新知探究阶段的思维交流。既是不断深化理解因数与倍数知识的过程,又是培养学生良好思维品质的过程。给学生独立思考的空间,提出了各自的解法或见解,是思维独创性的培养;引导学生一对一对有序的找,或从1开始,用除法一个个去试,是思维条理性的培养;既有迁移于摆方块的形象思维,又有直接运用除法算式的抽象思维,或乘除法口诀的综合运用等,在感受解法多样性中,培养了学生思维的灵活性。在这里教师继续提问学生“找到什么时候停?”让学生自然得出:找到两个因数非常接近时就不用再找了。这样一来对学生又是一个知识层面上的提高。

倍数和因数评课稿2

  这是一节概念课,关于“倍数和因数”教材中没有写出具体的数学意义,只是借助乘法算式加以说明,进而让学生探究寻找一个数的倍数和因数。

  听了X老师执教的《倍数和因数》,总体感觉本节课的教学中规中矩,目标基本达成、重点突出、难点突破、教法灵活、学法指导较到位、小组活动有效,在“因数和倍数”概念的学习过程中,重视师生情感的交流,注重每个学生的发展,较好地体现了“教师有效引导下学生自主探索”这一教学策略,遗憾的是教学时间分配不够合理。

  1、意义教学引导学生自主构建

  在多次的实践教学中,发现用12个完全相同的小正方形拼出一个长方形。对于四年级的学生来说非常容易。教材这样安排的目的,在于帮助学生有意识地感受1和12、2和6、3和4这几组数之间的.有机联系。

  本课中,倍数和因数的意义教学分三个层次:①借助三个问题让学生通过实践操作,想像及大屏幕的直观演示,引导学生得出三道乘法算式,同时介绍倍数和因数的含义。②通过除法算式找因倍关系。③渗透倍数和因数的相互依存性。

  2、寻找一个数的因数和倍数的方法让学生自己生成

  在寻找一个数的因数和倍数的过程中。教师将学生推向发现与探索的前台,寻找一个数的倍数和因数,方法不是惟一的。教师在肯定各种方法合理性的同时,及时引导学生进行沟通,寻找它们的共同点和联系,进而比较各种方法之间的优劣,遴选最优方法,提升思维效率。

  3、合理组织教材

  寻找一个数的因数是本节课的教学难点,学生往往满足于答案的寻找,而忽视寻找过程中的思考策略及思维方法。

  教学中,教师独具匠心,采用列表的方法找2、3、5的倍数,让学生概括一个数倍数的特征,并在此基础上学习一个数因数的特征,这样的改变,既达到预定目的,又为学习找因数做了铺垫,引发了学生寻找36的因数的浓厚兴趣。在汇报时,重点解决如何有序、不重复、不遗漏地找出一个数的因数。这样安排既留足了自主探究的空间,又在方法上有所引导,避免了学生的盲目猜测。在引导学生自主探索一个数的因数的特征时,教师让学生带着问题去观察讨论:每一个非零自然数的因数的个数是有限的还是无限的?一个非零自然数的最大因数是几?一个非零自然数的最小因数是几?以上安排,降低了学生的学习难度。

  4、增强游戏中数学思维的含量

  本节课以“有效引导下自主探索”为教学策略。以三道乘法算式为线索,以教材文本为依托,以有梯度的活动展开对知识的深化巩固,并适时、适量引入多媒体辅助教学,将诸多细小的认知活动归整在一个探究性的课堂自主研究活动中。通过自主观察、交流发现、共同分享,引领学生经历“研究与发现”的真实过程。课尾游戏的运用,激发了学生的学习热情,让学生以愉快的心情和良好的体验融入学习活动中,培养了学生用数学眼光看待游戏的意识,大大降低了学生对数学概念学习的枯燥体验,让知识在游戏中深化,在挑战中升华。

  两点建议:

  1、要精心设计由易到难、由浅入深的练习促进理解,巩固新知,发展思维。由于时间分配不够合理,未能体现出练习的层次性。

  2、反馈渠道要畅通。要注重课堂反馈,找2和5的倍数反馈时不少学生只停留在乘法算式层面,说明教学找3的倍数时学法指导还不够到位。

倍数和因数评课稿3

  《因数和倍数》整节课简明清晰,教师语言精练,始终为学生创造宽松的学习氛围。课前交流渗透人与人之间的关系,亲切,有效,让学生先在脑海中留下“相互依存”这种印象。为后面教学因数和倍数的概念,不能单独存在埋下伏笔。在教学中引导学生观察除法算式,放手让学生根据计算结果,按一定的标准给算式分类,在此基础上引出概念;结合算式,让学生说一说每个算式中谁是谁的因数,谁是谁的倍数,让学生在交流中掌握概念,进一步体会“因数与倍数是相互依存的”,突破了重难点。接着通过引导学生用一个式子来表示这样的除法算式,进而用字母陈述概念,帮助学生理解因数与倍数的本质意义,体会数学语言简单明了、高度概括的特点。

  练习设计体现了基础性、层次性和发展性。既巩固了对因数和倍数概念的理解,又把“倍数”与“几倍”,“因数”与乘法各部分名称的区别进行了辨析,很好地理解和巩固了概念。

  在学生的学习过程中,老师适时进行有效的评价,对小学生知识技能掌握和情感态度的发展有积极影响。整节课缺乏教师的即时性评价,对学生的行为表现没有给予及时的鼓励、调控和引导,特别是在学生回答出因数和倍数的相互依存关系,用“被除数÷除数=商”和“a÷b=c”表示这一类除法算式时,教师如果能适时地点拨激励,对于学生深入思考、增强自信心、激发学习兴趣将产生积极作用,而这些心理因素对学生取得新的进步又能起到推动作用,从而使学生进入一个不断发展的良性循环之中。