不规则物体的体积是在学生学习了长方体、正方体的体积,容积等有关知识的基础上进行教学的,对于学生灵活运用知识解决问题是一个非常大的挑战。
一、亮点
1、注重指导学生观察、实验,理解排水法的解题思路。在教学中,邸老师通过让学生观察瓶子中的水,思考哪些是喝掉的水,让学生想一想根据之前学习的知识能否解决问题,从而想办法怎样把不规则的物体转换为规则物体,进而解决不规则物体的体积。接着,邸老师通过倒置瓶子,让学生继续观察对比,发现什么不变,什么变化了。学生通过观察发现瓶子没有变化,所以体积也没有变化,空白部分的体积也没有变化。那么到底是什么发生变化了呢?高度变了,形状也变化了。通过这样认真细致地观察,学生会想到把不规则物体的体积转换为规则物体的体积,也就是圆柱的体积进行计算,这也就揭示了排水法的解题思路。
2、注重习题的多样性、层次性。邸老师在新知的学习过程中,通过精心的教学设计,学生的细致思考,得出求不规则物体的体积的解题思路。在练习中,邸老师注重练习的层次性,由简单到复杂,由单一到多样,循序渐进,教学效果较好,练习的时间充分,关注了不同学生的学习。
二、建议
1、在教学过程中,可以对解决问题的步骤进行提炼总结,回顾与反思,利于学生清晰解题思路,能够依据数学模型解决不规则物体的体积问题。
2、在教学过程中,还需要留给学生充分的思考时间和空间,让学生在思维碰撞中理解所学的知识,能够应用所学知识解决问题。
回顾课堂,感觉亮点如下:
(1)在合作中提高自主学习能力。本节活动课注重求不规则物体的方法,设计求土豆(或其他不规则物体)的体积,让学生以小组合作学习的形式探究,先确定实验目的及分工,然后小组展开讨论,确定测量方案,研究试验操作的步骤,实际测量并计算。这种让学生真正地、实实在在的进行观察和操作,不仅重视学生知识的获得,更重视数学思想和方法的形成,提高学生的自主学习能力。
(2)感受数学方法在学习新知中的重要性。学生在探索中掌握了学习数学的思想与方法,而这又将成为学生探索的“导航灯”。
感受:
大部分学生已经掌握了用“排水法”求不规则物体的体积,但还有个别学生空间思维能力不强,还需加强练习和个别辅导。
不规则的物体在我们的日常生活中随处可见,发现、验证并运用排水法测量石块的体积是本节课教学的重点,并在理解上升的水的体积就是浸入水中物体的体积的基础上,感悟转化的数学思想,是本节课的难点。
我个人认为这节课的设计能够结合课本,依托学生的认知基础和已有知识,通过让学生经历独立思考、合作探究、实验操作等数学活动过程,尝试用多种方法解决实际问题,体验等积变形的转化思想,探究测量不规则物体体积的方法。培养了学生积极探索,小组合作,勇于创新的精神。通过以解决问题为目的的实践活动,培养孩子实践能力和用数学方法分析、解决现实生活中实际问题的能力。在本节课中我有一下几点体会:
1、有情激发学生的探究欲
数学问题的解决主体是学生,学生的积极性是否被激发和调动起来了,是学习成败的决定性因素。本节课的开始,我就开门见山地抛出问题你能测量出一张A4纸的体积吗?这个问题使学生感到一种挑战性,虽然A4纸是一个规则的长方体,也知道要去测量它的长、宽、高,但是这么薄,利用现有的测量工具是无法测量出来的。怎么办呢?学生的求知欲、探索欲被激发起来了。
又如当学生会测量规则的A4纸的体积后,教师话锋一转,问:那桌面上这些不规则物体的体积你想测量吗?学生立刻进入到另一种兴奋的状态,因为桌面上摆放着芒果、大螺丝、奇形怪状的石头,这都是学生生活中随处可见的,但要说谁测量过它们的体积,还真没有人体验过,所以孩子们的热情和欲望愈发强烈。
在学生成功测量出不规则物体的体积后,掌握了测量不规则物体体积的方法后,我又提出一个难题,让学生测量灯泡的体积。这下真是一波刚平,一波又起,学生的探究欲望再一次被点燃,灯泡会浮起来,怎么测量呢?围绕着这一问题小组内叽叽喳喳地小声交流起来,几个想出点子的同学迫不及待地介绍开来,我们可以将灯泡和刚才的重物缠在一起,然后放到水里,这样就能测量出灯泡的体积了。话音刚落,几个小伙伴就忙活开了。
这里除了激发起了学生求知探索的欲望外,教师还能给足学生思考、实验、交流的时间,使学生真正并且完整地经历整个过程,有效地培养了学生的思考能力,保证了课堂教学的实效,也真正做到了有情。
2、有意培养学生的思维能力
学生数学思维能力的高低,直接影响着解决问题水平的高低。其中思维的概括性、问题性、逻辑性是学生思维能力的重要表现。因此,在教学中应该善于抓住每一个环节,下功夫培养学生的思维能力,为问题解决提供强有力的载体。
在测量一张A4纸体积时,我利用问题如何测量A4纸的高呢?引发学生思考,几个学生开始有所超越,想到了我可以再多拿一些同样的A4纸,把它们叠在一起,这样就能测量出A4纸的高了。学生的思维得到了一种飞跃性的发展,懂得利用转化的思想,先测量出100张的体积,然后再求出1张的体积。而这样的思维训练使学生的学习更加有意义。
在学生利用量筒(长方体容器)测量不规则物体体积时,他们能想出用排水法测量不规则物体的体积,但是这里有一个很重要的知识点,那就是明白转化的思想,从而掌握测量方法。本节课,我在学生演示测量过程的时候,借机一问为什么相差部分水的体积就是不规则物体的体积呢?从而帮助学生理解,我们不是直接去测量不规则物体的体积,而是将不规则物体的体积转化为水的体积,进而想出根据测量方法的不同,可以有不同的转化,如上升法:V物=V上升部分;下降法:V物=V下降部分;溢出法:V物=V溢出部分。
3、有价强化学生的技能水平
学生已有的知识技能水平是问题解决的重要保障。在学生面临新问题时,这种已有的知识、技能就是学习新知识、形成新技能的推动器。因此,教学中必须重视强化学生的基本知识、基本技能,使得学生的学习更扎实、深刻,实现真正的学习目标。
例如在本课的教学中,我将学生的实验测量与列式计算解决问题相结合,当学生悟出测量出100张纸的高后,马上让学生介绍如何求一张A4纸体积的方法,将学生之前学习的长方体体积的知识进行拓展应用。再如测量不规则物体的体积时,我刻意提供一些体积很大的石头,使得学生无法利用量筒测量,只能利用长方体容器来测量,而在测量中,就需要学生利用容积的知识,明白需要测量容器里面的长和宽,而计算中有的学生就灵活地利用长宽高度差=不规则物体的体积,准确测量出不规则物体的体积。
在这一系列的测量活动中,学生不仅是感受到了数学中的转化思想,更是得到了一次检验自身综合实践能力的机会,从而达到认识上、知识上、技能上、思维上、情感上的更高目标。
本节课虽然有以上几点亮点,但是还是存在着对问题解决过程缺乏评价的不足。
在学生测量不规则物体体积的过程中,求出物体的体积不是问题解决的终结,还应对解决问题的过程和结果进行评价,通过评价,可以进一步揭示数学问题的本质,培养学生分析问题、解决问题的能力。在探求过程中,往往会出现许多不同的.方法和结果,教师要给予学生充分的自由,允许他们发表意见,保护学生的积极性。而本课在这个环节上做的还很不够。
不规则的物体在我们的日常生活中随处可见,发现、验证并运用排水法测量不规则物体的体积是本节课教学的重点。目的在于通过本节课使学生明白任何一个想法都应当通过亲身的实践去验证才能够得到结论再加以应用,这是一种很严密的思维过程,也是现在孩子缺少的一种思想。并在理解“上升的水的体积就是浸入水中物体的体积”的基础上,感悟“转化”的数学思想,是本节课的难点。
本节课的教学,要依托学生的认知基础和已有知识,通过让学生经历观察、猜想、实验操作等数学活动过程,尝试用多种方法解决实际问题,体验等量替换的数学思想,探究求不规则物体体积的方法。培养学生积极探索,小组合作,勇于创新的精神。通过以解决问题为目的的实践活动,培养孩子实践能力和用数学方法分析、解决现实生活中实际问题的能力。
在本节课中,有很多环节的处理都不是很到位,主要从以下几点谈谈自己的体会:
1、保证数学思考的时间,提高数学思考的有效性
在学生完成实验结果汇报后,思考:“为什么上升的那部分水的体积就是物体的体积”?学生一时表述不清,老师由于心急就赶紧插嘴,引导学生思考、表述。其实,只要给点时间让他们思考,他们就能意识到:水面上升的原因是投入了石块,水增加的体积就是石块的体积。还有一些学生,先是疑惑,停顿几秒后,就都豁然开朗了。数学学习是通过思考进行的,没有学生的思考就没有真正的数学学习,而思考问题是需要一定的时间的。因此学生在思考时,教师要做到耐心等待,给予了学生充足的思考时间,使学生真正经历了整个思考过程,有效地培养了学生的思考能力。保证了学生思考的实际效果。
2、注重思维方法的引导,从“授人以鱼”到“授人以渔”
在教学时,我通过引导,让学生发现,不规则的物体的体积必须要转化成规则物体的体积,水可以充当这一转化过程中的中介,解决问题的关键是怎样在水中体现不规则物体的体积,学生思考后交流:将不规则物体放入盛有一定量水的长方体容器里,上涨的水的体积就是石块的体积;将不规则物体放入盛满水的长方体容器里,溢出的水的体积就是不规则物体的体积。对于溢出的水,学生也想出了很好的处理方法。在此,我就为学生创设了自主学习的空间,先让学生独立思考,每个人有自己的想法后,在交流中造成冲突,又在观察、讨论、思考中相互接纳,满足了学生的不同需要,尽显了学生的潜在能力,发挥了课堂教学中的多种交互作用,使师生的生命力在课堂中得到充分的发挥。
由于教师教学水平欠缺,在教学过程还出现了很多失误。尤其是刻意去追求公式,限制了学生的思维,而且公式的得出也不是很科学。对于教材的解读与挖掘,我还要多多学习和研究。教师为了顺利结束课程,以缩短或牺牲学生的学习及讨论过程为代价是极其愚蠢的举动。若让学生完成他学习、讨论过程的展示,师生们将会获得怎样的收获都是不一定的。由此我也深该地认识到,教师只有不断学习,提升教学水平,增强自信,才能驾驭课堂,顺利完成教学任务。
本节课的内容是在学生已经学习了容积和容积单位、长方体和正方体体积的基础上进行教学的。
成功之处:
1.利用学生的生活经验进行教学,体会转化思想。在教学例6中,教师首先提出如何求橡皮泥的体积时,学生由于在学习长方体和正方体的体积概念时,已经知道把一块橡皮泥捏成一个长方体或一个正方体,体积不变的特点,因此在教学中学生能够轻松解决这个问题,利用转化法把橡皮泥捏成规则的形状,就可以求出橡皮泥的体积。在求梨的体积时学生也能想到把梨放进有水的容器里,通过观察水上升,发现上升部分水的体积等于梨的体积,即梨的体积=总体积-水的体积。通过例题的教学,学生认识到解决不规则物体的体积就是把它转化为规则物体的体积进行计算。
2.变化习题,深入体会不规则物体体积的计算方法。在教学求不规则物体的体积后,我出示了一组练习题:
(1)一个正方体鱼缸,从里面量棱长是2分米,向鱼缸内倒入5.5升水,再把几条金鱼放入水中,这时量得水深15厘米,求这几天金鱼的体积。
(2)课本练习九第7题:求珊瑚石的体积。
第(1)题:主要让学生根据不规则物体的体积=总体积-水的体积计算公式解决问题。而在第(2)题中,学生既可以根据上面的公式解决问题,也可以根据上升部分水的体积是一个长方体,即珊瑚石的体积=长×宽×高,强调这个高是水面上升部分的高度(总高度-水的高度),并把这两种方法联系起来对比,学生可以发现这两种方法的基点就是乘法分配律,从而沟通两种方法的联系对比,进一步体会求不规则物体体积的计算方法。
不足之处:
学生在解决练习九第9题中,对于水池溢出的水的体积的理解有误,理解成了水池溢出的水的体积等于两根石柱的体积。为什么会出现这种情况,这与我在教学乒乓球和冰块不能用排水法有关系,没有给学生强调必须把物体完全沉入水中,才能得到水面上升部分的体积=物体的体积。
改进之处:
在教学中还是要注意强调水面上升部分的体积=沉入水中物体的体积这一核心特点。
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学
超市采购的述职报告范文
新年工作计划范文合集五篇
精选教师辞职报告范文模板五篇
食品厂的实习报告集锦六篇
临近期末校长讲话稿范文(通用五篇)
中考动员大会讲话稿
秋季小学家长会讲话稿
小学生春季开学安全教育讲话稿(精选五篇)
校园文化艺术节讲话稿范文(精选五篇)
一年级新生家长会数学老师讲话稿
齐齐哈尔工程学院在新疆高考招生计划人数专业代码(2024参考)
宁夏工商职业技术学院在河南高考招生计划人数专业代码(2024参考)
河北高考排名184970左右排位历史可以上哪些大学,具体能上什么大学
湖北高考排名174600左右排位物理可以上哪些大学,具体能上什么大学
考福州外语外贸学院要多少分宁夏考生 附2024录取名次和最低分
湖南师范大学在云南高考招生计划人数专业代码(2024参考)
广东高考排名247430左右排位物理可以上哪些大学,具体能上什么大学
陕西青年职业学院在宁夏高考历年录戎数线(2024届参考)
安徽文达信息工程学院的审计学专业排名怎么样 附历年录戎数线
安徽高考排名263910左右排位理科可以上哪些大学,具体能上什么大学
考安顺学院要多少分广东考生 附2024录取名次和最低分
广东高考排名94120左右排位物理可以上哪些大学,具体能上什么大学
四川高考排名6710左右排位理科可以上哪些大学,具体能上什么大学
考洛阳科技职业学院要多少分甘肃考生 附2024录取名次和最低分
福建高考排名46830左右排位物理可以上哪些大学,具体能上什么大学
重庆机电职业技术大学的数控技术专业排名怎么样 附历年录戎数线
郑州升达经贸管理学院和辽宁工业大学哪个好 附对比和区别排名
赣州职业技术学院和扬州工业职业技术学院哪个好 附对比和区别排名
江西外语外贸职业学院在内蒙古高考历年录戎数线(2024届参考)
四川高考排名14260左右排位理科可以上哪些大学,具体能上什么大学
小学生毕业励志讲话稿范文
小学清明节扫墓讲话稿范文(通用六篇)
区委书记在创卫工作动员会上的讲话稿
一年级下册数的顺序评课稿
高三毕业典礼教师讲话稿
东方之珠的语文评课稿
画戏剧脸谱评课稿
关于大学生军训通讯稿精选
秋季新学期国旗下讲话稿
高中开学校长讲话稿(十五篇)
年会讲话稿范文(通用7篇)
交通安全家长会讲话稿范文(精选五篇)
期末升旗仪式的讲话稿(精选8篇)
大班元旦国旗下精彩讲话稿(精选六篇)
高三学生代表表彰大会发言稿