数学学习计划模板汇编九篇

张东东老师

数学学习计划 篇1

  一、指导思想

  本学期以阜康市教研计划为统领,以学习新课程标准为动力,把探索“以导学案为主的课堂改革”的模式作为本学期教学的课堂教学研究,并结合“创建学习型组织”的学习与实践,树立教研组团队合作意识。加强教学常规建设和课题研究,积极开展校本研究,进一步提高我校数学整体的教学水平。

  二、工作要点

  1、切实加强教学常规管理,积极实践课改的新理念、新思路,提高课堂教学效率。

  2、加强师资队伍建设,认真学习领会新标准,积极开展新教材研究工作,充分发挥学科带头人、骨干教师的示范作用。

  3、认真开展集体备课和课题研究活动,加强教研组团队合作意识。

  4、继续开展对教师的“磨课”活动,帮助教师快速成长,提高本组教师的课堂教学能力。

  5、认真组织教师参加课改活动,充分发挥本组教师的课改积极性。

  6、继承和发扬我组教师良好的师德修养、爱岗敬业的精神、良好的教风和教学研究的热情。在全组发扬团队意识、合作意识和竞争意识,形成浓厚的教研之风、互学之风、创新之风。

  7、立足课堂,在“以导学案为主的课堂改革”中深入实践与研究。

  8、争创市级优秀教研组。

  9、做好培优辅差工作,争取优秀率提高3个百分点,合格率提高5个百分点。

  三、具体措施

  1、加强理论学习,提升教师素质。

  (1)进一步认真学习新《课程标准》,领会教材的编写意图和特点,认真分析教学内容、目标、重难点,严格执行新标准的指导思想,提出具体可行的教学方法。继续开展教科研活动,各位教师要加强学习,努力实践,善于总结,积极参与校本教材的研发工作,提高教科研能力,积极进行教学改革创新。

  (2)继续开展“专家团进校园”跟踪式培训活动,给予理论和课堂教学的指导,通过与专家的磨课、问题座谈、探讨交流提高教师自己的课堂教学水平。

  2、做好教学常规工作。

  (1)在教学常规方面努力做到:备课要“深”、上课要“实”、作业要“精”、教学要“活”、手段要“新”、辅导要“细”、负担要“轻”、质量要“高”。

  (2)加大听课、评课力度。本学期,继续开展教研组内听课、教师结对听课、校外听课,重点检查上课、听课老师的教学反思,从而促使我们的教师互相学习,共同进步。

  (3)组织教师观摩名师课堂并进行交流,学习他们的教学艺术、先进的教学理念来帮助自己提高自己的课堂教学。

  3、加大课堂教学改革力度,做到“有效教学”。

  课堂教学改革以适应我校学生实际为宗旨,探索适合学生实际的教育教学方式方法,把“以导学案为主的课堂改革”的模式作为本学期教学的课堂教学研究,实现课堂教学理念的更新。从而做到课堂教学的有效性。

  4、加强备课组教研活动,强化教研功能。

  各备课组由备课组长负责继续实行集体备课制,备课组长要把好本组的教学质量关,每位教师应明确树立集体质量意识,切实做好备课过程中的各个细节,充分发挥备课组的集体智慧,备出优质课,特色课,全力打造实用课。共同探讨“新课程、新标准、新教法”的教学模式;同时注重发挥每位教师各自的教学特色和风格。

  5、加快培养青年教师的步伐,为学校的可持续发展打下坚实的基础。

  把各项活动当作培养青年骨干教师的途径,并作为教研组的一项长期的重要的工作来抓,为学校的可持续发展打下坚实的基础。校内公开课活动要以青年教师为主,让他们在习惯于上公开课的前提下帮助他们提高上公开课的水平。从他们当中选出代表参加青年教师教学风采赛活动等,进行较高层次的锻炼。

  6、认真开展课题研究,不断深化教学改革。

  进一步发挥教研组功能,组内教师积极参与小课题研究,并协助市科研室搞好专题研究活动。在本组内,开展业务学习活动,每次活动确定主题和中心发言人,主题的确定小而实,真正起到为教学服务的作用;中心发言人要做精心的准备,然后大家一起探讨、交流,共同提高教育教学水平。

  6、抓实抓好数学骨干教师培养的工作。

  尽可能多地为教师“架桥、搭台”,提供机会,做好研究、服务、指导工作,力争让我校的小学数学教学工作向纵深发展,凸现更多的优秀数学青年骨干教师。

  8、面向全体学生,积极辅导学习困难学生,使他们在原有水平上得到提高,努力培养优等生,使他们得到更高的发展。

  征对上学期数学期末成绩中D等率人数比较多的问题,尤其是中高年级,本学期将加大力度重点做好辅差工作,有年级组出培优辅差方案,每月进行考查,并进行反思不断更新辅差方法,争取期末成绩合格率有所提升。

数学学习计划 篇2

  学习教材:高等数学上、下册(同济大学数学系编,第六版),线性代数(同济大学数学系编,第五版),概率论与数理统计(浙江大学盛骤编,第四版)

  学习时间:3月份-6月份

  学习目的:通过对整个课本的全称学习,掌握考研数学的考点内容

  学习方法:参加领航教育的基础导学课程,可以通过导学课程掌握考研复习的学习方法。概念部分:一定要记准了概念,有许多选择题就是由概念引深出来的或者是直接的概念题,并且要理解。公式部分:自己准备个单独的小笔记,把高数、线代、概率里面所有的公式都要整理出来,不是从课本上抄下来,是结合自己的理解来记忆并能灵活的运用。自己要有一个错题集和经典题集,专门用来收集自己错过的经典的题,并标注好知识点。

  学习计划:

  一、3月24号上午9:00----11:00

  不定积分

  1.原函数、不定积分的概念;

  2.不定积分的基本公式,不定积分的性质,不定积分的换元积分法与分部积分法;

  3.会求有理函数和简单无理函数的积分.

  定积分

  1.定积分的概念和性质,定积分中值定理;

  2.定积分的换元积分法与分部积分法;

  3.积分上限的函数的概念和它的导数,牛顿-莱布尼茨公式;

  4.反常积分的概念与计算;

  5.用定积分计算平面图形的面积、旋转体的体积,函数的平均值.

  :本章的基础课后习题

  二、3月31号上午9:00----11:00

  微分方程

  1.微分方程及其阶、解、通解、初始条件和特解等概念;

  2.变量可分离的微分方程及一阶线性微分方程的解法;

  3.齐次微分方程的解法;

  4.线性微分方程解的性质及解的结构;

  5.二阶常系数齐次线性微分方程的解法;

  6.会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.

  作业:本章的基础课后习题

  三、4月7号上午9:00----11:00

  来总部阶段测评

  四、4月14号上午9:00----11:00

  多元函数微分学

  1.二元函数的概念与几何意义;

  2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;

  3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;

  4.多元复合函数一阶、二阶偏导数的求法;

  5.隐函数存在定理,计算多元隐函数的偏导数;

  6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.

  作业:本章的基础课后习题

  五、4月21号上午9:00----11:00

  重积分

  1.二重积分的概念和性质,二重积分的中值定理;

  2.会利用直角坐标、极坐标计算二重积分.

  级数

  1.常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;

  2.几何级数与级数的收敛与发散的条件;

  3.正项级数收敛性的比较判别法和比值判别法;

  4.交错级数和莱布尼茨判别法;

  5.任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;

  6.函数项级数的收敛域及和函数的概念;

  7.幂级数的收敛半径、收敛区间及收敛域的求法;

  8.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数;

  9.函数展开为泰勒级数的充分必要条件;

  10.,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.

  作业:本章的基础课后习题

  六、4月28号上午9:00----11:00

  行列式

  1.行列式的概念和性质,行列式按行(列)展开定理.

  2.用行列式的性质和行列式按行(列)展开定理计算行列式.

  3.用克莱姆法则解齐次线性方程组.

  作业:本章的基础课后习题

  对角行列式、上(下)三角形行列式值的结论需要记住,以后直接使用,熟记范德蒙行列式的特点与计算公式

  七、5月5号上午9:00----11:00

  矩阵

  1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质.

  2.矩阵的线性运算、乘法运算、转置以及它们的运算规律.

  3.方阵的幂与方阵乘积的行列式的性质.

  4.逆矩阵的概念和性质,矩阵可逆的充分必要条件.

  5.伴随矩阵的概念,用伴随矩阵求逆矩阵.

  6.分块矩阵及其运算

  作业:本章的基础课后习题

  八、5月12号上午9:00----11:00

  总部考试

  九、5月19号上午9:00----11:00

  向量与线性方程组

  1.齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件.

  2.齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法.

  3.非齐次线性方程组解的结构及通解.

  4.用初等行变换求解线性方程组的方法.

  5.维向量、向量的线性组合与线性表示的概念

  6.向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法.

  7.向量组的极大线性无关组和向量组的秩的概念和求解.

  8.向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系.

  作业:本章的基础课后习题

  十、5月26号上午9:00----11:00

  矩阵的特征值和特征向量

  1.内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法.

  2.规范正交基、正交矩阵的概念以及它们的性质.

  3.矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量.

  4.相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法.

  5.实对称矩阵的特征值和特征向量的性质.

  作业:本章的基础课后习题

  二次型

  1.二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理.

  2.正交变换化二次型为标准形,配方法化二次型为标准形.

  3.正定二次型、正定矩阵的概念和判别法.

  作业:本章的基础课后习题

  十一、6月2号上午9:00----11:00

  考试

  十二、6月9号上午9:00----11:00

  随机事件和概率

  1.样本空间(基本事件空间)的概念,随机事件的概念,事件的关系及运算.

  2.概率、条件概率的概念,概率的基本性质.

  3.会计算古典型概率和几何型概率.

  4.概率的五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯(Bayes)公式.

  5.事件独立性的概念与计算.

  作业:本章的基础课后习题

  随机变量及其分布

  1.随机变量的概念,分布函数的概念及性质.

  2.独立重复试验的概念与有关事件概率的计算.

  3.离散型随机变量及其概率分布的概念,几种常见的离散型随机变量:0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布.

  4.连续型随机变量及其概率密度的概念,几种常见的连续型随机变量:均匀分布、正态分布、指数分布.

  5.随机变量函数的分布.

  作业:本章的基础课后习题

  十三、6月16号上午9:00----11:00

  多维随机变量及分布

  1.多维随机变量的概念,多维随机变量的分布的概念和性质.

  2.二维离散型随机变量的概率分布、边缘分布和条件分布.

  3.二维连续型随机变量的概率密度、边缘密度和条件密度.

  4.随机变量的独立性及不相关性的概念,随机变量相互独立的条件.

  5.二维均匀分布,二维正态分布的概率密度,求理解其中参数的概率意义.

  6.两个随机变量简单函数的分

  作业:本章的基础课后习题

  十四、6月23号上午9:00----11:00

  考试

  十五、6月30号上午9:00----11:00

  随机变量的数字特征

  1.随机变量数字特征:数学期望、方差、标准差、矩、协方差、相关系数的概念.

  2.会运用数字特征的基本性质,并掌握常用分布的数字特征.

  3.随机变量函数的数学期望.

  4.切比雪夫不等式.

  作业:本章的基础课后习题

  大数定律和中心极限定理

  1.切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).

  2.棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)

  作业:本章的基础课后习题

  样本及抽样分布

  1.总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.

  2.分布、分布和分布的概念及性质,上侧分位数的概念并会查表.

  3.正态总体的常用抽样分布.

  作业:本章的基础课后习题

  矩估计和最大似然估计

  1.参数的点估计、估计量与估计值的概念.

  2.矩估计法(一阶矩、二阶矩)和最大似然估计法.

  作业:本章的基础课后习题

  7月1号到20号,自己将学习过程中得重点难点整理到笔记上,然后把练习时做过的错题重新做一遍,并把对应的知识点复习一遍,以便暑期能跟上强化班的进度。

  7月底到8月中旬:暑假强化班

  学习难点:可能第一遍复习完,老师刚讲过的题当时听明白了,课下回去做得时候还是没有思路或者出错,这是很常见的现象,这时候要把知识点定位,然后回想老师对知识点的解说,或者看看课本例题,一定不要浮躁,要理解知识点,不只是套公式,灵活的运用。

数学学习计划 篇3

  一、本班学生情况分析:

  五年级(3)班共有学生66人,其中男生30人,女生26人,男生数偏多,并且调皮学生较多,上课不认真听且影响周围的也较多,许多学生的学习态度都较不端正,学习目的不明确,平时学习比较懒惰,加上学习兴趣不够浓厚,所以数学成绩比较差。学习成绩较优的学生则较会听课,学习比较主动、塌实。本学期在抓好基础知识教学同时,加强后进生的辅导和优等生的指导,全面提高本班的整体成绩。

  二、教材内容分析:

  本册教材整体内容分布:(一)分数的意义和性质(二).长方体和正方体(三)分数的加法和减法(四)方程(五)折线统计图(六)总复习。

  三、教学目标

  (1)理解分数的意义和基本性质,会比较分数的大小,会把假分数化成带分数或整数,会进行整数、分数、小数互化,能够比较熟练地进行约分和通分。

  (2)使学生知道体积和容积的意义及度量单位,会进行简单的单位间的换算,感受有关体积的计算方法,探索某些实物体积的测量方法。

  (3)理解分数加减法的意义,掌握分数加减法的计算法则,并能熟练地计算。

  (4)使学生知道什么是方程,并能正确地解方程。

  (5)认识折线统计图,能根据需要选择合适的统计图表示数据。

  (6)通过实践活动,使学生体验数学与日常生活的密切联系,培养学生的数学应用意识和动手操作能力。

  四、本册教材重、难点

  (1)分数的意义和性质,分数加减法的计算。

  (2)长方体和正方体的表面积和体积的计算。

  (3)能正确地解方程。

  五、教学措施

  1、多写表扬、激励性评语激发学生的学习热情,努力培养学生良好的行为习惯和学习习惯。开展优秀作业本评比、数学学习周记评比等活动,让学生们在竞赛评比和表扬中获得进步。

  2、注重因材施教,进一步做好培优补差工作。让学优生和学困生结对,达到手拉手同进步的目的。

  3、踏踏实实做好教学常规工作,以自己认真负责的工作态度,满腔热情的工作作风,虚心向同事学习,同时争取家长的配合,共同做好对学生的培养。

  4、指导学生写数学学习周记并给以激励性评语,依据学生周记写教师教学周记。

  5、通过实践活动,使学生体验数学与日常生活的密切联系,培养学生的数学应用意识和动手操作能力。

  6、创设民主和谐的学习气氛,让学生真正成为学习的主人,激发学生学习数学的兴趣。培养学生的合作精神,使每个学生在各自不同的基础上都能得到提高。

  7、注重学生知识形成和探究过程中获得的经验和方法的积累,使学生初步学会自主学习形式上可以多采用动手、动脑、动口相结合,讨论、抢答等形式的学习,培养学生从周围情境中发现数学问题并能用所学知识解决问题的能力。

  8、课内与课外相结合。课内学知识,课外学技能,运用理论,使学生真正做到将知识的掌握灵活运用。

  9、在学习过程中培养学生认真负责的学习态度和细心计算和验算的好习惯。

  10、精讲多练,熟能生巧。

数学学习计划 篇4

  在数学教学学习过程中,引导学生把所学的知识进行系统归纳和总结,弥补学习过程中的缺漏,使六年来所学的数学知识条理化、系统化,从而更好地掌握各部分知识的重点和关键。要重视知识的系统化,避免盲目做题,搞题海战术,确实抓好复习工作,提高教学质量。

  一、贯彻《课程标准》,重视复习的针对性。

  教师要认真研究《课程标准》,把握教学要求,弄清重点和难点,做到有的放矢。要引导学生反复阅读课本,弄清重点章节,以及每一章节的复习重点。要根据平时作业情况和各单元测试情况,弄清学生学习中的难点、疑点所在。计划先根据教材的安排进行复习;再分概念、计算、应用题三大块进行训练;最后适当进行综合训练,切实保证复习效果。

  二、梳理拓展,强化复习的系统性。

  复习课的一个重要特点就是在系统原理的指导下,引导学生对所学的知识进行系统的整理,把分散的知识综合成一个整体,使之形成一个较完整的知识体系,从而提高学生对知识的掌握水平。

  三、倡导解题方法多样化,提高解题的灵活性。

  解题方法多样化可以培养学生分析问题的能力,灵活解题的能力。不同的分析思路,列式不同,结果相同,收到殊途同归的效果,同时也给其他的学生以启迪,开阔解题思路。复习时,要引导学生从不同的角度去思考,引导学生对各类习题进行归类,这样才能使所学的知识融会贯通,提高解题的灵活性。

  四、有的放矢,挖掘创新。

  复习一定要做到精要,有目的、有重点,要让学生在练习中完成对所学知识的归纳、概括。题目的设计要新颖,具有开放性、创新性,能多角度、多方位地调动学生的能动性,让他们多思考,使思维得到充分发展, 学到更多的解题技能。

  五、面向全体,全面提高。

  面向全体学生是素质教育的基本要义之一,总复习更应该体现这一点。教师应全面了解“学情”恰当对学生作出评价,正确引导学生搞好复习,以期他们取得好的成绩。

  六、在复习过程中,我们精心选择和设计练习题,加强解题方法的指导,提高学生解题能力。

  毕业班数学复习课的备课,重点要抓住二点:一是要把握教材内容,善于提炼和归纳教材的知识要点和训练重点;二是要根据教材的知识要点和训练重点,精心选择和设计练习题。

  七、我们在制定复习计划、实施复习时应该注意以下几点:

  1、克服复习单纯为应付考试的错误思想,防止在复习中不适当地加重学生过重负担,大量挤占学生休息和活动时间,只重少数学生提优、轻多数学生提高和猜题押题、死记硬背等错误做法,应该把复习看作整个教学工作的一个重要环节。

  2、克服复习中只重一例一题,不重知识基本结构的做法。

  3、克服复习中只重知识技能,不重提高发展学生数学思考能力的做法。

  4、克服复习中只管上课不管效果的做法。

  5、克服复习中只注意课本,不关注课改和(标准)的做法。

  八、时间安排

  第一阶段巩固知识、整理知识。4-5周

  第二阶段归类训练发展提高3周

  第三阶段模拟训练查漏补缺2周

  九、复习的基本策略

  1、巩固知识,以练为主。巩固知识是复习课的主要任务。以练为主,且以学生自己笔练为主,应作为巩固知识的主要策略。常见复习时有的课还以教师讲学生听为主,或者以教师提问个别学生应答为主。实践证明这些方式大多没有以学生动笔练习为主的效果好。复习时教师除了帮助学生理清要点和说明常见错误的防止和纠正策略外,应大胆放心地让学生自己练习,通过练习巩固知识,获得提高。

  2、整理知识,学生为主。整理知识是复习课的重要一环。常见在复习时师生通过一问一答由教师将知识整理出来,我们认为整理知识最好以学生为主,教师应当是引导者和组织者。实践证明在教师引导下以学生自己为主,并通过同学之间的交流来整理知识,学生容易理清知识和理解知识之间的联系区别,记牢知识和运用知识解决简单实际问题。

  3、查漏补缺,调查为先。查漏补缺是复习的重要内容。所以在复习前摸清学生中的“漏”和“缺”非常重要,在复习课中应十分重视补“缺漏”和纠错误。摸清“缺漏”和常见的错误,平时摘记学生作业中的问题不失为一个好方法,在复习课之前,作些摸底调查也非常必要。

数学学习计划 篇5

  高三差生数学复习学习计划

  一、根据科目的特点和历年高考,可想而知数学处于高考中的地位。处于备考中,我们应该有目的有顺序的复习,选择适合的复习资料,恰当的运用途径,熟读、细读,准确的把握高考的信息和动向。

  二、要熟记课本上的所有的公式,定理,和定义。要掌握解答方法和应用。

  三、要根据自己学习基础的实际情况,适当的找一些的资料来复习,还有比较重要的一点是,复习要抓住数学的教材不放,将其进行阅读、模仿、思考、解答,弄清楚所学知识的基本结构,学而时习之,一定会有很好的学习效果。

  四、要以方法和技巧为重点,提高自己的分析能力,解决能力。强调通性通法,全面的系统复习,灵活运用通法,锻炼综合能力与应试技巧。

  五、强化知识的综合性和交汇性,巩固方法的选择性和灵活性。 检查复习的知识疏漏点和解题易错点,探索解题的规律,知识网络的生成过程。

  六、综合性的训练,查漏补缺,更好的优化自己的学习方法,自我的心理辅导,放松心情,让自己更轻松的对待复习,对待应考。

  如何做好数学复习

  高考数学的考察主要还是基础知识,难题也不过是在简单题的基础上加以综合。所以课本上的内容是很重要的,如果课本上的知识都不能掌握,就没有触类旁通的资本。

  对课本上的内容,上课之前最好能够首先预习一下,否则上课时有一个知识点没有跟上老师的步骤,下面的就不知所以然了,如此恶性循环,就会开始厌烦数学,对学习来说兴趣是很重要的。课后针对性的练习题一定要认真做,不能偷懒,也可以在课后复习时把课堂例题反复演算几遍,毕竟上课的时候,是老师在进行题目的演算和讲解,学生在听,这是一个比较机械、比较被动的接受知识的过程。也许你认为自己在课堂上听懂了,但实际上你对于解题方法的理解还没有达到一个比较深入的程度,并且非常容易忽视一些真正的解题过程中必定遇到的难点。“好脑子不如赖笔头”。对于数理化题目的解法,光靠脑子里的大致想法是不够的,一定要经过周密的笔头计算才能够发现其中的难点并且掌握化解方法,最终得到正确的计算结果。

  其次是要善于总结归类,寻找不同的题型、不同的知识点之间的共性和联系,把学过的知识系统化。举个具体的例子:高一代数的函数部分,我们学习了指数函数、对数函数、幂函数、三角函数等好几种不同类型的函数。但是把它们对比着总结一下,你就会发现无论哪种函数,我们需要掌握的都是它的表达式、图象形状、奇偶性、增减性和对称性。那么你可以将这些函数的上述内容制作在一张大表格中,对比着进行理解和记忆。在解题时注意函数表达式与图形结合使用,必定会收到好得多的效果。

  最后就是要加强课后练习,除了作业之外,找一本好的参考书,尽量多做一下书上的练习题(尤其是综合题和应用题)。熟能生巧,这样才能巩固课堂学习的效果,使你的解题速度越来越快。

  拓展:如何制定计划

  一、把握高考形势,确定高三数学复习的计划

  我们知道,目前的高考在不断改革,高考形势也在不断变化,那么我们心中要有明确的认识,清楚的知道高考要考什么,我们要如何应对高考,这意味着我们在复习时要根据全国卷命题规律来有针对性的复习。

  观察全国卷高考,与四川卷最大的不同在于数列的大题没有了,后面多了三个选作题,学生选作一题,选做题中对以前没有重点学习的极坐标有了考察。

  高三的数学复习计划大致分为三个阶段,有着不同的任务、目标和学习方法。

  第一阶段是高三第一学期的数学基础复习。我们应该与学校老师的复习安排大体一致,即一轮复习主要是跟着老师进度走,尽量把所有的高考知识点做到毫无遗漏的复习,强调细节,掌握好基础知识。

  第二阶段是高三第二学期前半部分的数学系统复习,即二轮复习。我们要把数学的几大分支,如函数、三角、数列、解析几何等知识进行系统化、条理化。对整个数学考点进行梳理,并发现自己的问题,针对性的查漏补缺。

  第三阶段是考前一两个月的数学综合复习,即冲刺阶段。我们应该要懂得文武之道,一张一弛,在加强模拟训练,提高考试技巧的同时也要调节自己的学习和生活节奏,调整好心态来迎接高考。

  二、坚定信心,落实好整个数学复习计划

  高三是一个快节奏,大运动量的学习生活阶段,我们需要有条不紊的落实好复习计划,提高学习效率。期中最重要的是坚定信心,哪怕数学基础比较差,也要相信经过高三一年的努力,高考同样会出现奇迹的。只是我们需要充满信心,脚踏实地,多做解题反思,日积月累,水到渠成。

  数学是高考科目之一,故从初一开始就要认真地学习数学。进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于同学们不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。有不少同学把提高数学成绩的希望寄托在大量做题上。我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。

  其次要掌握正确的学习方法。锻炼自己学数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。这样,通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。

  总之,对高中生来说,学好数学,要抱着浓厚的兴趣去学习数学,积极展开思维的翅膀,主动地参与教育全过程,充分发挥自己的主观能动性,愉快有效地学数学。

数学学习计划 篇6

  寒假即将到来,你是否已经为自己做好了规划。充实地过好这个假期,会让你的考研复习有一个质的飞跃,相信领先教育,一定是一个正确的选择。以下是领先教育为20xx考研学子打造的高数复习计划。如果你能按照这个计划做,一定可以达到理想的效果。但是面对一个很实际的问题就是,学生们放假回家了,是否能充分利用好假期,是否真的可以按计划完成学习任务呢?因此领先在寒假期间推出一个“赢”计划之数学集训营,帮助大家以下面的计划作为大纲,结合大量的练习题,科学的测试及讲解,对高等数学进行知识分类,讲授解题技巧。此外,还会提前开始线性代数的导学。

  首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。

  1 第一阶段复习计划:

  复习高数书上册第一章,需要达到以下目标:

  1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.

  2.了解函数的有界性、单调性、周期性和奇偶性.

  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

  4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

  5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.

  6.掌握极限的性质及四则运算法则.

  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

  8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.

  9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

  10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

  本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

  2第二阶段复习计划:

  复习高数书上册第二章1-3节,需达到以下目标:

  1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

  2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

  3.了解高阶导数的概念,会求简单函数的高阶导数.

  本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。

  3 第三阶段复习计划:

  复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:

  1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.

  2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.

  3.掌握用洛必达法则求未定式极限的方法.

  4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.

  5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.

  本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

  4 第四阶段复习计划

  复习高数书上册第四章 第1-3节。需达到以下目标:

  1.理解原函数的概念,理解不定积分的概念.

  2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法.会求简单函数的不定积分。

  本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

  5 第五阶段复习计划

  复习高数书上册第五章第1-3节。达到以下目标:

  1.理解定积分的几何意义。

  2.掌握定积分的性质及定积分中值定理。

  3.掌握定积分换元积分法与定积分广义换元法.

  本周的主要任务是掌握不定积分的性质,会根据不定积分的.性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

  6 第六阶段复习计划

  复习高数书上册第五章第4节,第六章第2节。达到以下目标:

  1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.

  2.掌握定积分换元法与定积分广义换元法. 会求分段函数的定积分。

  3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。

  本周主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。

数学学习计划 篇7

  首先,先将寒假分为几个阶段,然后按下面计划进行,完成高等数学(上)的复习内容。

  1 第一阶段复习计划:

  复习高数书上册第一章,需要达到以下目标:

  1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.

  2.了解函数的有界性、单调性、周期性和奇偶性.

  3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.

  4.掌握基本初等函数的性质及其图形,了解初等函数的概念.

  5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.

  6.掌握极限的性质及四则运算法则.

  7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

  8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.

  9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

  10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

  本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。

  2 第二阶段复习计划:

  复习高数书上册第二章1-3节,需达到以下目标:

  1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

  2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

  3.了解高阶导数的概念,会求简单函数的高阶导数.

  本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。

  3 第三阶段复习计划:

  复习高数书上册第二章 4-5节,第三章1-5节。需达到以下目标:

  1.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.

  2.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和柯西(Cauchy)中值定理.

  3.掌握用洛必达法则求未定式极限的方法.

  4.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.

  5.会用导数判断函数图形的凹凸性。(注:在区间[a,b]内,设函数具有二阶导数。当 时,图形是凹的;当 时,图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.

  本周主要任务是掌握分段函数,反函数,隐函数,由参数方程确定函数的导数。会根据函数在一点的导数判断函数的增减性。会应用微分中值定理证明。会根据洛比达法则的几种情况应用法则求极限。掌握极值存在的必要条件,第一和第二充分条件。会计算函数的极值和最值以及函数的凸凹性。会计算函数的渐近线。会计算与导数有关的应用题[边际问题、弹性问题、经济问题和几何问题的最值]。

  4 第四阶段复习计划

  复习高数书上册第四章 第1-3节。需达到以下目标:

  1.理解原函数的概念,理解不定积分的概念.

  2.掌握不定积分的基本公式,掌握不定积分的性质,掌握不定积分换元积分法与分部积分法.会求简单函数的不定积分。

  本周主要任务是掌握不定积分的性质,不定积分的公式[牢记一个函数的原函数有无穷多个,注意+C],会运用第一,第二换元法求函数的不定积分。掌握不定积分分部积分公式并应用。

  5 第五阶段复习计划

  复习高数书上册第五章第1-3节。达到以下目标:

  1.理解定积分的几何意义。

  2.掌握定积分的性质及定积分中值定理。

  3.掌握定积分换元积分法与定积分广义换元法.

  本周的主要任务是掌握不定积分的性质,会根据不定积分的性质做题。尤其注意积分上下限互换后积分值变为其相反数,定积分与变量无关,可根据函数奇偶性计算定积分等性质。

  6 第六阶段复习计划

  复习高数书上册第五章第4节,第六章第2节。达到以下目标:

  1.掌握积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.

  2.掌握定积分换元法与定积分广义换元法. 会求分段函数的定积分。

  3.掌握用定积分计算一些几何量 (如平面图形的面积、旋转体的体积)。了解广义积分与无穷限积分。

  本周主要任务是掌握积分上限函数的性质,掌握牛顿-莱布尼茨公式,应用定积分换元法求定积分。会根据定积分的几何意义计算平面图形的面积、旋转体的体积。

数学学习计划 篇8

  今年我很荣幸成为了宁蒗县小学数学名师工作室的一名学员,我希望通过一年的学习,能使自己的数学教学水平得到一定的提高,教研能力在实践中得到培养和锻炼,通过学习提高自己的理论水平,同时不断更新和丰富自己的知识面,努力提高自己的综合素质,以便在以后的工作中更好地服务学生,更好地服务教学。因此,特定以下学习计划:

  一学习目标:

  1、加强数学学科知识的学习,提高自己的理论知识。

  2、加强教学研究,提高自身的教学水平。

  3、开展课堂展示,提高实践能力。

  二 对个人的学习工作要求

  1、不断丰富自己的理论知识。多读有关教育学、心理学的文章及书籍,理解新课标的理念,数学课程标准的基本理念、目标和各阶段的要求,多读有关教育教学的杂志和报刊,如《云南教育 》、《中国教育报》等,经常关注就教育教学动态,提高自身的数学教学素养。

  2、努力形成自己的教学风格。在实践教学中,认真上好每堂课,钻研教材,勤写教学反思,主动承担公开课的教学任务,每年最少承担两次学校组织的公开课

  教学任务,加强“设疑导学”教学法的实践与探索,学习名师的教学经验和教学特色,努力形成自己独特的教学风格。

  3、勤于钻研。积极参加学校组织开展的教育科研活动,把握基础教育改革的动态,特别是小学数学学科研究的动态,善于用教育理论来指导教学实践,在学校教学改革中发挥带头、示范和辐射作用,逐步提高自身和学校的教育科研能力。

  4、学会观察、评价、改进课堂教学的技术和策略,有效提高课堂教学效率,打造优质高效课堂,有效减轻学生课业负担,使学生会学、乐学、好学。

  三 计划完成的主要工作内容

  1、深入研究自己所教的新课标人教版的小学数学教材体系,研究其编排的特点、内容及方法等,能博采众长,正确把握教材的编排意图,提高自己的教学水平。

  2、了解小学数学教学的新成果与新视点,明确数学改革的方向,自觉更新知识结构,改变课堂教学模式,灵活运用教学方法,建立新型师生关系,有效提高课堂教学效率。

  3、积极参与工作室组织的各项研究,学习活动,根据工作室的要求积极收集,上传与工作室研究课题有关的教学资源。

  四本年度的工作安排:

  1、积极参加工作室的常规活动。

  2、建立业务学习,工作交流例会笔记。

  3、进行教育理论的学习和教育教学前沿信息的收集和处理工作,关注教育改革和发展的动态和趋向,提高自己实施新课程的能力。

  4、积极参与小组学习的课例分析、课题交流、专题研讨等活动。

  xxx

  20xx年9月25日星期三

数学学习计划 篇9

  如果我们对各门功课的复习制订切实可行的计划,那么成绩的提高是指日可待。复习时间的安排有长期、中期和短期。长期要与老师的安排大体一致,即整体进度跟着老师走。

  中期安排就数学而言,主要是抓好几大分支:函数、三角、数列、不等式等以及解析几何、立体几何。其中函数(含不等式)、数列、解析几何是重中之重。第一轮复习时要注意各分支之间的有机结合,综合程度要根据自己的实际情况而定,普通中学的学生对综合程度高的难题,可以暂时回避,先把基础内容掌握好。立体几何近年上海卷因两种教材并行考查相对容易。

  近期安排就是以章为单位或一周为单位,做个可行的计划,有时计划可以安排每天做些什么,任务要具体明确,操作性强。计划要结合老师的近期安排,跟着老师的节奏并在完成老师布置的作业后,针对自己的薄弱环节重点突破(如忘掉的公式要记住,生疏的方法要熟练)。第一轮复习务必要把基本概念、解决一类问题的基本方法等扎实掌握。