一、一年任务早知道科学安排时间
如果我们对各门功课的复习制订切实可行的计划,那么成绩的提高是指日可待。复习时间的安排有长期、中期和短期。长期要与老师的安排大体一致,即整体进度跟着老师走。
中期安排就数学而言,主要是抓好几大分支:函数、三角、数列、不等式等以及解析几何、立体几何。其中函数(含不等式)、数列、解析几何是重中之重。第一轮复习时要注意各分支之间的有机结合,综合程度要根据自己的实际情况而定,普通中学的学生对综合程度高的难题,可以暂时回避,先把基础内容掌握好。立体几何近年上海卷因两种教材并行考查相对容易。
近期安排就是以章为单位或一周为单位,做个可行的计划,有时计划可以安排每天做些什么,任务要具体明确,操作性强。计划要结合老师的近期安排,跟着老师的节奏并在完成老师布置的作业后,针对自己的薄弱环节重点突破(如忘掉的公式要记住,生疏的方法要熟练)。第一轮复习务必要把基本概念、解决一类问题的基本方法等扎实掌握。
二、计划关键在落实提高学习效率
一年之际在于春的意义谁都明白,对新高三的同学,9月份是关键时期,要适应高三的快节奏、大运动量的学习生活。
双基落实到位。即要掌握各章节的基本概念和常见问题的解题方法,以及相应的技能技巧。有些同学之所以一听就懂,一看就会,一做就错的原因就在这方面做的不到位。课堂上不仅要和老师同步思考,还要争取与老师同步或快于老师算出正确答案。只听懂是远远不够的,它离掌握知识、形成能力还有很远距离。要知道纸上得来终觉浅,绝知此事要躬行。
限时做好作业。做作业要给自己规定时间,像考试一样进入状态,同样遵循先易后难的原则,遇到难题要认真思考,但一时做不出要学会放弃。老师在批改时发现不会做或错误较多的地方会集体讲评。提倡做后满分,就是对做错的题目要认真订正,不妨准备一本错题集,记下错误原因,过段时间再回顾一下,争取不犯同样错误。有些同学做作业毫无时间观念,一边看公式一边做题,甚至互相对答案,这种作业不能反映实际水平,一旦考试就眼高手低,不是速度慢就是计算差错多。应引起部分同学(尤其是中等以下水平同学)的重视。
减少低级错误。低级错误导致会而不对或对而不全,这是有些同学分数上不去的主要原因。大都是由审题失误、计算失误,考试时还会有紧张等心理因素引起。这些问题容易被以粗心的表象所掩盖,实际上经常的粗心就是一种不好的习惯,必须充分认识到它的危害性,并努力加以克服。
总结:有关于高三数学复习方案和学习计划的内容就为您介绍完了,希望您通过对高三数学复习方案和学习计划文章的阅读,轻松应对20xx高考!
一、教材方面
本册教学内容包括乘法、升和毫升、三角形、混合运算、平行四边形和梯形、找规律、运算率、对称、平移和旋转、倍数和因数、用计算器探索规律、解决问题的策略和统计共计13个方面的内容。内容很多,而且互相独立,联系不大。而在这些内容中,有些内容是非常重要的,如乘法、三角形、混合运算、平行四边形和梯形、运算率、倍数和因数、解决问题的策略这些内容是非常重要的,而用计算器探索规律,只要求学生了解即可。
具体安排:
乘法方面,一方面,通过计算比较,感受积的变化规律。P5第5题通过填表、比较,可以体会乘数变化引起积的变化规律,并帮助理解乘数末尾有0的乘法笔算简便算法。另一方面,用题组以旧带新,让学生学会新的口算。以上所说的口算,也是通过计算、比较,体会新的口算的方法,促进学生在知识上获得进一步发展。
升和毫升,认识升和毫升,首先要了解容量,但对于学生来说,容量这个词既可能有过接触,又是难以建立的一个概念。P10例题安排了三个小题,让学生联系实际情景,在具体的比较中体验、感受容量的含义。先通过比较两个茶杯哪个盛水多一些,向学生说明盛水多的容量比较大,体会杯子能盛水的多少就是它的容量大小,并掌握升和毫升的进率。
三角形,1、掌握三角形及其基本特征;2、认识三角形的底和高,并会做已知底上的高;3、了解三角形的稳定性;4、知道三角形内角和是180度,并会求角的度数。
混合运算,本单元教学整数三步计算的混合运算,这是在四上学习了两步计算混合运算基础上安排的,也是整数混合运算的最后一个单元。本单元的内容分三段安排:第一段通过例1教学不含小括号的三步混合运算;第二段通过例2教学含有小括号的三步混合运算;第三段通过例3教学含有中括号的三步混合运算。教材结合混合运算,安排学生解决一些简单的三步计算实际问题,提高学生应用数学知识解决简单实际问题的能力。
运算率,熟练的掌握乘法分配率,并能运用定律进行简便计算。
倍数和因数,理解倍数和因数的意义;掌握2、3、5倍数的特征;理解奇数和偶数;素数和合数。
解决问题才策略,让学生用画图的策略探索解决图形实际问题的方法。启发学生画图表示问题的信息,引导学生探寻思路、解决问题,体验通过画图解决图形问题的策略。
二、学生方面
我班共有学生20人,期中成绩优异的有:周宏敏、刘欣、白嘉豪、宋雅琴、刘洁等,学习困难的有宋佳明、刘伟、刘晓杰等,大多学生成绩处于中等,对知识的掌握较好。复习中应以全体学生为主,面向全体学生,重基础知识。
三、措施
期末复习是教师引导学生对所学习过的知识材料进行再学习的过程,在这个学习过程中,要引导学生把所学的知识进行系统归纳和总结,弥补学习过程中的缺漏,使所学的数学知识条理化、系统化,从而更好地掌握各部分知识的重点和关键。要重视知识的系统化,避免盲目做题,搞题海战术,确实抓好复习工作,提高教学质量。
1、抓住复习重点,突出难点。小学所学数学知识中,计算和应用题是复习重点,突破这两个重点,坚持每日进行计算的练习,提高速度和准确率。
2、对常考易错题需多讲多练。常考易错题多是教学内容中的基础知识、重点知识,而往往又是学生一不细心就错的题,从实际考虑,这类题的失误、丢分,都会让人感到太可惜、不应该。所以,在总复习时,我们不能忽略此类题的复习,只有通过复习,才能让学生学会细心抓住关键之处正确解题。
3、在复习过程中,要精心选择和设计练习题,加强解题方法的指导,提高学生解题能力。复习重点要抓住二点:一是要把握教材内容,善于提炼和归纳教材的知识要点和训练重点;二是要根据教材的知识要点和训练重点,精心选择和设计练习题。练习题不在于多,一道好的题目,往往能“牵一发而动全身”,起到事半功倍的作用。
学生主要是以预习七年级第二学期内容为主,以便对下个学期进一步的学习数学知识有一个更明确的把握,了解数学学习的连贯之处。通常七年级学生刚刚从小学进入初中,还不太适应初中的学习方式。小学阶段,学生主要以模仿式学习为主,而进入中学后则完全不一样,要求学生必须要学会自己独立学习,独立思考。
七年级学生往往不善于课前预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出什么问题和疑点。那到底该如何预习呢?预习的步骤有哪些呢?
一、粗读。
先粗略课文浏览教材的有关内容,大致了解相关内容,掌握本书知识的基本框架,同时了解新课的重点和难点。
二、细读。
对重要概念、公式、法则、定理反复阅读、仔细体会、认真思考,注意知识的发展形成过程,对难以理解的概念作出标记,以便新学期上课时带着问题听课效率更高。通过课前预习能够使学生知道那些地方容易,哪些地方难,会使今后的听课变得更有针对性,注意力更集中,从而提高了听课的效率。大量的事实证明,养成良好的预习习惯,能使孩子从被动学习转为主动学习,同时能逐步培养孩子的自学能力。有了自学能力,就好比掌握了打开知识宝库的钥匙,就能源源不断的获取新知识,汲取新的营养。
三、细心地挖掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:
一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在单项式的概念(数字和字母积的代数式是单项式)中,很多同学忽略了“单个字母或数字也是单项式”。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?那就要求你做到:
一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;
二列:列出相关的知识点,标出重点、难点,列出各知识点之间的网络关系,这相当于写出总结要点;
三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。
四归:归纳出体现所学知识的各种题型及解题方法。
五编:根据所总结的内容编一些顺口溜;如:总结不等式组解集时,“大大取大,小小取小,大小小大中间找,大大小小找不着。”证明成比例线段时,可总结为“遇等积化等比,横看竖看定相似,不想死,别生气,等线等比来代替;遇等比化等积,想到射影与圆幂” 。
总之,七年级是学生知识奠定的根基时期,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,学法与教法结合,课堂与课后结合,教师指导与学生探求结合,家长督导和学生自觉学习相结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法,为日后进一步进行数学学习打下良好的基础。
学习教材:高等数学上、下册(同济大学数学系编,第六版),线性代数(同济大学数学系编,第五版),概率论与数理统计(浙江大学盛骤编,第四版)
学习时间:3月份-6月份
学习目的:通过对整个课本的全称学习,掌握考研数学的考点内容
学习方法:参加领航教育的基础导学课程,可以通过导学课程掌握考研复习的学习方法。概念部分:一定要记准了概念,有许多选择题就是由概念引深出来的或者是直接的概念题,并且要理解。公式部分:自己准备个单独的小笔记,把高数、线代、概率里面所有的公式都要整理出来,不是从课本上抄下来,是结合自己的理解来记忆并能灵活的运用。自己要有一个错题集和经典题集,专门用来收集自己错过的经典的题,并标注好知识点。
学习计划:
一、3月24号上午9:00----11:00
不定积分
1.原函数、不定积分的概念;
2.不定积分的基本公式,不定积分的性质,不定积分的换元积分法与分部积分法;
3.会求有理函数和简单无理函数的积分.
定积分
1.定积分的概念和性质,定积分中值定理;
2.定积分的换元积分法与分部积分法;
3.积分上限的函数的概念和它的导数,牛顿-莱布尼茨公式;
4.反常积分的概念与计算;
5.用定积分计算平面图形的面积、旋转体的体积,函数的平均值.
:本章的基础课后习题
二、3月31号上午9:00----11:00
微分方程
1.微分方程及其阶、解、通解、初始条件和特解等概念;
2.变量可分离的微分方程及一阶线性微分方程的解法;
3.齐次微分方程的解法;
4.线性微分方程解的性质及解的结构;
5.二阶常系数齐次线性微分方程的解法;
6.会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.
作业:本章的基础课后习题
三、4月7号上午9:00----11:00
来总部阶段测评
四、4月14号上午9:00----11:00
多元函数微分学
1.二元函数的概念与几何意义;
2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;
3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;
4.多元复合函数一阶、二阶偏导数的求法;
5.隐函数存在定理,计算多元隐函数的偏导数;
6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.
作业:本章的基础课后习题
五、4月21号上午9:00----11:00
重积分
1.二重积分的概念和性质,二重积分的中值定理;
2.会利用直角坐标、极坐标计算二重积分.
级数
1.常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;
2.几何级数与级数的收敛与发散的条件;
3.正项级数收敛性的比较判别法和比值判别法;
4.交错级数和莱布尼茨判别法;
5.任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;
6.函数项级数的收敛域及和函数的概念;
7.幂级数的收敛半径、收敛区间及收敛域的求法;
8.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数;
9.函数展开为泰勒级数的充分必要条件;
10.,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.
作业:本章的基础课后习题
六、4月28号上午9:00----11:00
行列式
1.行列式的概念和性质,行列式按行(列)展开定理.
2.用行列式的性质和行列式按行(列)展开定理计算行列式.
3.用克莱姆法则解齐次线性方程组.
作业:本章的基础课后习题
对角行列式、上(下)三角形行列式值的结论需要记住,以后直接使用,熟记范德蒙行列式的特点与计算公式
七、5月5号上午9:00----11:00
矩阵
1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质.
2.矩阵的线性运算、乘法运算、转置以及它们的运算规律.
3.方阵的幂与方阵乘积的行列式的性质.
4.逆矩阵的概念和性质,矩阵可逆的充分必要条件.
5.伴随矩阵的概念,用伴随矩阵求逆矩阵.
6.分块矩阵及其运算
作业:本章的基础课后习题
八、5月12号上午9:00----11:00
总部考试
九、5月19号上午9:00----11:00
向量与线性方程组
1.齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件.
2.齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法.
3.非齐次线性方程组解的结构及通解.
4.用初等行变换求解线性方程组的方法.
5.维向量、向量的线性组合与线性表示的概念
6.向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法.
7.向量组的极大线性无关组和向量组的秩的概念和求解.
8.向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系.
作业:本章的基础课后习题
十、5月26号上午9:00----11:00
矩阵的特征值和特征向量
1.内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法.
2.规范正交基、正交矩阵的概念以及它们的性质.
3.矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量.
4.相似矩阵的概念、性质,矩阵可相似对角化的.充分必要条件,将矩阵化为相似对角矩阵的方法.
5.实对称矩阵的特征值和特征向量的性质.
作业:本章的基础课后习题
二次型
1.二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理.
2.正交变换化二次型为标准形,配方法化二次型为标准形.
3.正定二次型、正定矩阵的概念和判别法.
作业:本章的基础课后习题
十一、6月2号上午9:00----11:00
考试
十二、6月9号上午9:00----11:00
随机事件和概率
1.样本空间(基本事件空间)的概念,随机事件的概念,事件的关系及运算.
2.概率、条件概率的概念,概率的基本性质.
3.会计算古典型概率和几何型概率.
4.概率的五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯(Bayes)公式.
5.事件独立性的概念与计算.
作业:本章的基础课后习题
随机变量及其分布
1.随机变量的概念,分布函数的概念及性质.
2.独立重复试验的概念与有关事件概率的计算.
3.离散型随机变量及其概率分布的概念,几种常见的离散型随机变量:0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布.
4.连续型随机变量及其概率密度的概念,几种常见的连续型随机变量:均匀分布、正态分布、指数分布.
5.随机变量函数的分布.
作业:本章的基础课后习题
十三、6月16号上午9:00----11:00
多维随机变量及分布
1.多维随机变量的概念,多维随机变量的分布的概念和性质.
2.二维离散型随机变量的概率分布、边缘分布和条件分布.
3.二维连续型随机变量的概率密度、边缘密度和条件密度.
4.随机变量的独立性及不相关性的概念,随机变量相互独立的条件.
5.二维均匀分布,二维正态分布的概率密度,求理解其中参数的概率意义.
6.两个随机变量简单函数的分
作业:本章的基础课后习题
十四、6月23号上午9:00----11:00
考试
十五、6月30号上午9:00----11:00
随机变量的数字特征
1.随机变量数字特征:数学期望、方差、标准差、矩、协方差、相关系数的概念.
2.会运用数字特征的基本性质,并掌握常用分布的数字特征.
3.随机变量函数的数学期望.
4.切比雪夫不等式.
作业:本章的基础课后习题
大数定律和中心极限定理
1.切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
2.棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)
作业:本章的基础课后习题
样本及抽样分布
1.总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.
2.分布、分布和分布的概念及性质,上侧分位数的概念并会查表.
3.正态总体的常用抽样分布.
作业:本章的基础课后习题
矩估计和最大似然估计
1.参数的点估计、估计量与估计值的概念.
2.矩估计法(一阶矩、二阶矩)和最大似然估计法.
作业:本章的基础课后习题
7月1号到20号,自己将学习过程中得重点难点整理到笔记上,然后把练习时做过的错题重新做一遍,并把对应的知识点复习一遍,以便暑期能跟上强化班的进度。
7月底到8月中旬:暑假强化班
学习难点:可能第一遍复习完,老师刚讲过的题当时听明白了,课下回去做得时候还是没有思路或者出错,这是很常见的现象,这时候要把知识点定位,然后回想老师对知识点的解说,或者看看课本例题,一定不要浮躁,要理解知识点,不只是套公式,灵活的运用。
一、学情分析:
我班共有学生XX人,多数学生能以端正的态度对待学习,并对学习数学有一定的积极性。他们对以前学过的知识掌握的比较扎实。上课时能积极思考,积极发言,作业认真按时完成。大部分同学能够熟练地口算100以内的加减法,能提出并解决简单的问题。对位置、图形、统计等方面的知识也能较好地掌握。总体来看,学生在100以内的加减法,表内乘法的计算方面基本达到教学要求,但少数学生的计算速度和正确率仍需提高。在数学知识的应用方面,学生有解决实际问题的兴趣,但一部分学生欠仔细、灵活。在数学的学习习惯上,听课习惯、作业习惯都有一定进步,但学生在学会审题上还需要培养和训练。
二、教学内容:
这一册教材包括下面一些内容:万以内数的认识,简单的万以内的加法和减法,混合运算、图形与拼组,千米、分米、毫米的认识,时分秒的认识、统计,找规律,用数学解决问题和数学实践活动等。
这册教材的重点内容是万以内数的认识以及用数学解决问题。
三、教学目标:
1、数与代数:①、结合具体情境,理解万以内数的意义,能认、读、写万以内的数,能说出各数的名称,识别各数位上数字的意义。②、结合具体情境,进一步理解运算的意义,会口算表内有余数除法、百以内加减法、能计算三位数的加减法及两步的加减法混合运算。结合现实素材进行估算,并解释估算的过程。③、能正确辨认钟面上指示的时刻,认识时、分、秒,了解它们之间的关系,并进行简单的换算。
2、空间与图形:①、通过观察操作,能用自己的语言描述长方形、正方形的特征,初步认识五边形、六边形。②、结合生活实际,体会千米,知道分米、毫米,能恰当地选择长度单位,并能进行简单的单位换算,会估测、测量一些物体的长度。③、结合实例,感知对称现象。
3、统计与概率:①、能用合适的方法收集整理数据。②、在具体的统计活动中,掌握分段统计的方法。
4、实践与综合运用:
①、加深对万以内数的认识及长度单位的认识。②、加深对统计意义的理解,巩固分段统计的方法。
四、教学措施:
1、创造性地使用教材,吃透教材,学习资料,更好地发挥教材的作用。体现知识的形成过程,加强教学过程的探索性。
2、用学生喜闻乐见的儿歌形式教学乘法口诀,从编儿歌再编口诀,降低口诀的难度。
3、在课堂中适当穿插一些数学日记,通过寻找其中的数学知识,激发学生的兴趣,培养学以致用的意识。万以内数的认识和加、减法教学重视发展学生的数感。
4、尊重学生,发挥学生的主体地位,在教师的指导下,争取做到自己能学懂的知识,让他们自己学,把课堂中更多的时间留给学生探索、交流和练习,培养学生解决问题的能力。
5、在具体教学时,要注意教学的开放性,引导学生暴露思维过程,鼓励学生多角度思考问题。充分利用思考题,培养学生灵活运用知识的能力,激发学生动脑筋钻研问题的兴趣,对学有余力的学生在开发智力上有促进作用。
6、提供关于空间与图形的丰富素材,促进学生空间观念的发展。
7、提供丰富的、现实的、具有探索性的学习活动,激发学生对数学的兴趣,逐步发展学生的数学思维能力和创新意识。
新的学期我会在数学教学工作中继续努力,以课堂为主阵地抓好教学工作,以新课程标准为指针,以提高学生的创新能力和数学综合素养为目的扎实工作,使学生们在本学期的数学学习中有更好的表现。
一、时间利用
学习最重要的就是对时间进行有效利用,每天拿出一定的时间进行学习复习,时间不能过长,大约在一小时左右即可,关键在于每天这一个小时的时间一定要能够保证,学习切忌一曝十寒。在保证学习时间的同时,大家也要讲究学习效率,在学习的过程中千万不要心浮气躁,同学们要保证每天一个小时的学习是全神贯注的。
二、学习方法
良好的学习方法会大大提高我们的学习效率,最大化利用了宝贵学习时间。最好的学习方法其实也就是在课堂上经常强调的,主要是立足课本,形成对数学知识的系统认识做到形散而神不散,以及对错误的正确纠正。
1、立足课本知识:任何科目的学习都万变不离其宗,数学也不例外,数学里面的这个“宗”,就是课本,考试的内容有些会高于课本,但是绝不会逃脱所学基础知识点。因此不能一味地去做一些试题而忽略了课本这个根本。立足课本并不是就是认为我把书看了,看懂了就行。只有在看书的基础之上,必须要保证将课本的知识点和例题弄明白,书后的每个练习都要认真地做一遍,这样才能说我们基本掌握了这一部分知识。
2、正确地纠错:在学习的过程中,每个人都会犯错,但是很多同学一错再错,这里面就涉及正确纠错的问题。有些学生认为纠错就是简单地用红笔把得数改正就可以的。正确的纠错应该是首先搞清楚自己到底错在哪里,是自己对题目的分析有问题还是运算过程中出现了错误,方便情况下使用错题本记录下来,每隔段时间要回顾下自己的错误,要把自己的错误记在心里,纠正头脑中的错误观念。
3、做好总结:总结是学习之后的一个重要环节,是对知识进行升华的形成系统化的知识网络,并在此基础上融会贯通。数学的总结应以每一章都形成一个小的知识体系,相关章节间形成以知识点连接形成一个大的知识网络。并利用这个知识体系和网络,记忆和掌握数学的各种定理和知识点。
三、具体学习计划
初三将会学习到的主要新知识点集中在圆、二次函数、相似三角形以及三角函数这几部分。但是初三另一个更重要的任务在于整个初中阶段数学知识复习为中考做好准备工作。学习计划因人而异,以下是我为新生作的今后的学习计划,可以根据你的实际情况慢慢改进完善。
第一阶段,时间应在开学前暑假。主要目的是提前预习初三的重点知识内容,需要在学习的过程中就将基础知识打牢,这样开学之后才能应付提高训练并为其他科目誊出学习时间。
第二阶段,是整个初三第一学期时间。这个阶段时间大约五个月,约占整个初三复习的一半时间左右。主要目的是完成初三新知识学习和初中数学基础知识复习。开学后应根据学校和教学老师进度等实际情况制定出详细学习计划。
寒假即将到来,你是否已经为自己做好了规划。充实地过好这个假期,会让你的考研复习有一个质的飞跃,相信领先教育,一定是一个正确的选择。以下是领先教育为20xx考研学子打造的高数复习计划。如果你能按照这个计划做,一定可以达到理想的效果。但是面对一个很实际的问题就是,学生们放假回家了,是否能充分利用好假期,是否真的可以按计划完成学习任务呢?因此领先在寒假期间推出一个“赢”计划之数学集训营,帮助大家以下面的计划作为大纲,结合大量的练习题,科学的测试及讲解,对高等数学进行知识分类,讲授解题技巧。此外,还会提前开始线性代数的导学。
首先,先将寒假分为八个阶段,然后按下面计划进行,完成高等数学的复习内容。
一、 第一阶段复习计划:
复习高数书上册第一章,需要达到以下目标:
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.
6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.
8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.
9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
本阶段主要任务是掌握函数的有界性、单调性、周期性和奇偶性;基本初等函数的性质及其图形;数列极限与函数极限的定义及其性质;无穷小量的比较;两个重要极限;函数连续的概念、函数间断点的类型;闭区间上连续函数的性质。
二、第二阶段复习计划:
复习高数书上册第二章1-3节,需达到以下目标:
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
本周主要任务是掌握导数的几何意义;函数的可导性与连续性之间的关系;平面曲线的切线和法线;牢记 基本初等函数的导数公式;会用递推法计算高阶导数。
三、第三阶段复习计划:
复习高数书上册第二章 4-5节,第三章1-5节。
广东高考排名245400左右排位历史可以上哪些大学,具体能上什么大学
湖南商务职业技术学院和武汉外语外事职业学院哪个好 附对比和区别排名
上饶职业技术学院和江西外语外贸职业学院哪个好 附对比和区别排名
浙江高考排名56650左右排位综合可以上哪些大学,具体能上什么大学
天津高考排名6950左右排位综合可以上哪些大学,具体能上什么大学
河南高考排名134880左右排位理科可以上哪些大学,具体能上什么大学
我的学习计划作文集锦十五篇)
四年级语文下册的复习计划
少年宫葫芦丝活动计划
学习计划模板汇总五篇
我的学习计划作文集锦十五篇)
四年级语文下册的复习计划
少年宫葫芦丝活动计划
高三寒假的复习计划
二年级班主任计划
小学三年级下册科学复习计划
黑龙江高考排名31220左右排位文科可以上哪些大学,具体能上什么大学
厦门华天涉外职业技术学院的民航运输服务专业排名怎么样 附历年录戎数
福建高考排名2890左右排位物理可以上哪些大学,具体能上什么大学
四川高考排名166380左右排位理科可以上哪些大学,具体能上什么大学
河南高考排名322500左右排位理科可以上哪些大学,具体能上什么大学
湖北高考排名111530左右排位物理可以上哪些大学,具体能上什么大学
广西高考排名64910左右排位文科可以上哪些大学,具体能上什么大学
广西高考排名44130左右排位文科可以上哪些大学,具体能上什么大学
浙江高考排名222820左右排位综合可以上哪些大学,具体能上什么大学
福建高考排名41720左右排位物理可以上哪些大学,具体能上什么大学
铜陵学院和荆楚理工学院哪个好 附对比和区别排名
河北高考排名74920左右排位历史可以上哪些大学,具体能上什么大学
湖南高考排名18690左右排位物理可以上哪些大学,具体能上什么大学
浙江高考排名15630左右排位综合可以上哪些大学,具体能上什么大学
上海海关学院在云南高考招生计划人数专业代码(2024参考)
桂林学院的国际经济与贸易专业排名怎么样 附历年录戎数线
广西高考排名27560左右排位文科可以上哪些大学,具体能上什么大学
厦门华厦学院和长治学院哪个好 附对比和区别排名
考肇庆学院要多少分河南考生 附2024录取名次和最低分
安徽高考排名145520左右排位文科可以上哪些大学,具体能上什么大学
学习部新学期学习计划模板合集七篇
学习计划汇编10篇
关于学期学习计划汇总8篇
四年级语文期末复习计划模板
四六级最后冲刺:时间紧合理复习计划尤其重要
学习计划模板汇总五篇
学习计划小学锦集7篇
有关学生个人学习计划汇总7篇
新学期学习计划模板合集五篇
有关学期学习计划模板锦集八篇
学生会开学计划范文
初中新学期学习计划三篇
精选学期学习计划范文9篇
高中的暑期学习计划
新学期学习计划模板汇总七篇