中考数学复习知识点之统计与概率整理

阿林老师

中考数学复习知识点:统计与概率

一、统计与概率改革的意义统计与概率内容的改革,对促进初中数学教学内容的现代化、结构的合理化,推动教育技术手段的现代化,改进教师的教学方式和学生的学习方式等都有积极的作用。

1.使初中数学内容结构更加合理现行初中数学教学内容主要包括代数、几何,统计含在代数之中。在初中阶段增加统计与概率的内容,能够使初中数学的内容结构在培养学生的能力方面更加合理。有利于信息技术的整合增加统计与概率的份量,有利于计算器等现代信息技术在数学教学中的普遍应用。

2.有效地改变教师的教学方式和学生的学习方式转变方式是学习统计与概率的内在要求。传统的传授式教学已不能满足教学的需要,学生的学习方式由被动接受变为主动探究。

二、处理统计与概率的基本原则

1.突出过程,以统计过程为线索处理统计与概率的内容统计学的主要任务是,研究如何以有效的方式收集和处理受随机性影响的数据,通过分析数据对所考察的问题作出推断和预测,从而为决策和行动提供依据和建议。

2.强调活动,通过活动体验统计的思想,建立统计的观念统计与生活实际是密切联系的,在收集数据、处理数据以及利用数据进行预测、推断和决策的过程中包含着大量的活动,完成这些活动需要正确的统计思想观念的指导。统计的学习要强调让学生从事简单的数据收集、整理、描述、分析,以及根据统计结果进行判断和预测等活动,以便渗透统计的思想,建立统计的观念。

3.循序渐进、螺旋上升式安排内容统计是一个包括数据的收集、整理、描述和分析的完整过程,这个过程中的每一步都包含着多种方法。例如,收集数据可以利用抽样调查,也可以进行全面调查;在描述数据中,可以用象形图、条形图、扇形图、直方图、折线图等各种统计图描述数据。对统计过程中的任意一步,教材不可能在一个统计过程中全面介绍,因此教材可以采用循序渐进、螺旋上升的方式处理内容,在重复统计活动的过程中,逐步安排收集数据和处理数据内容。

三、处理统计与概率时值得注意的几个问题

1.统计与概率宜分别相对集中安排概率是刻画事件发生可能性大小的量,统计是通过处理数据,利用分析数据的结果进行预测或决策的过程。从统计学内在的知识体系看,概率是统计学的有机组成部分,在数据的分析阶段,可以利用概率进行统计分析,从数据中得出结论,根据结论进行预测或判断。

2.使用信息技术,突出统计量的统计意义信息技术的发展,使收集数据和处理数据变得更方便、更快捷。我们可以通过计算机网络收集数据,利用计算机软件制作统计表,绘制各种统计图以及进行概率实验,这是统计与概率在各行各业得到广泛应用的一个重要原因。

3.淡化处理概念虽然概率与统计的概念不多,但有些概念给出定义是困难的,教材不必追求严格定义,应将重点放在理解概念的意义上来。

4.选材广泛,文字叙述通俗、简洁统计(包括概率)的现实生活素材是非常丰富的,编写教材时应当充分挖掘,尽量从学生的生活实际出发来引出和呈现内容,通过丰富的素材处理内容。

5.体现对教学方法和学习方式的指导统计(包括概率)与代数、几何相比,在研究的问题上以及研究问题的方法等方面有很大区别。统计、概率与现实生活密切联系,可以通过大量的活动来学习。

初中数学统计与概率知识点总结

1、统计

科学记数法:一个大于10的数可以表示成A10N的形式,其中1小于等于A小于10,N是正整数。

扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。

各类统计图的优劣:条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比。

近似数字和有效数字:①测量的结果都是近似的。②利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位。③对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。

平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X(上边一横)。

加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

中位数与众数:①N个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。②一组数据中出现次数最大的那个数据叫做这个组数据的众数。③优劣:平均数:所有数据参加运算,能充分利用数据所提供的信息,因此在现实生活中常用,但容易受极端值影响;中位数:计算简单,受极端值影响少,但不能充分利用所有数据的信息;众数:各个数据如果重复次数大致相等时,众数往往没有特别的意义。

调查:①为了一定的目的而对考察对象进行的全面调查,称为普查,其中所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。②从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。③抽样调查只考察总体中的一小部分个体,因此他的优点是调查范围小,节省时间,人力,物力和财力,但其调查结果往往不如普查得到的结果准确。为了获得较为准确的调查结果,抽样时要主要样本的代表性和广泛性。

频数与频率:①每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。②当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。

2、概率

可能性:①有些事情我们能确定他一定会发生,这些事情称为必然事件;有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的。②有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件。③一般来说,不确定事件发生的可能性是有大小的。

概率:①人们通常用1(或100%)来表示必然事件发生的可能性,用0来表示不可能事件发生的可能性。②游戏对双方公平是指双方获胜的可能性相同。③必然事件发生的概率为1,记作P(必然事件)=1;不可能事件发生的概率为0,记作P(不可能事件)=0;如果A为不确定事件,那么0〈P(A)〈1。

初三数学统计与概率知识点及例题

【易错分析】

易错点1:中位数、众数、平均数的有关概念理解不透彻,错求中位数、众数、平均数.

易错点2:在从统计图获取信息时,一定要先判断统计图的准确性.不规则的统计图往往使人产生错觉,得到不准确的信息.

易错点3:对全面调查与抽样调查的概念及它们的适用范围不清楚,造成错误.

易错点4:极差、方差的概念理解不清晰,从而不能正确求出一组数据的极差、方差.

易错点5:概率与频率的意义理解不清晰,不能正确的求出事件的概率.

【好题闯关】

好题1.在一次数学竞赛中,10名学生的成绩如下: 75 80 80 70 85 95 70 65 70 80.则这次竞赛成绩的众数是多少?

解析:对众数的概念理解不清,会误认为这组数据中80出现了三次,所以这组数据的众数是80.根据众数的意义可知,一组数据中出现次数最多的数据是这组数据的众数.而在数据中70也出现了三次,所以这组数据是众数有两个.

答案:这组数据的众数是70和80.