山西中考数学考点分析

孙小飞老师

山西中考数学考点分析

一、圆及圆的相关量的定义

1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有公共点为相切,这条直线叫做圆的切线,这个的公共点叫做切点。

6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

二、有关圆的字母表示方法(7个)

圆--⊙ 半径—r 弧--⌒ 直径—d

扇形弧长/圆锥母线—l 周长—C 面积—S三、有关圆的基本性质与定理(27个)

1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):

P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO

2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5.一条弧所对的圆周角等于它所对的圆心角的一半。

6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

7.不在同一直线上的3个点确定一个圆。

8.一个三角形有确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。

9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):

AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO

10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

外离P>R+r;外切P=R+r;相交R-r

三、有关圆的计算公式

1.圆的周长C=2πr=πd

2.圆的面积S=s=πr?

3.扇形弧长l=nπr/180

4.扇形面积S=nπr? /360=rl/2

5.圆锥侧面积S=πrl

四、圆的方程

1.圆的标准方程

在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是

(x-a)^2+(y-b)^2=r^2

2.圆的一般方程

把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是

x^2+y^2+Dx+Ey+F=0

和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2

相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.

山西中考数学考点

一、基本概念

1。方程、方程的解(根)、方程组的解、解方程(组)

2.分类:

二、解方程的依据—等式性质

1.a=b←→a+c=b+c

2.a=b←→ac=bc (c≠0)

三、解法

1。一元一次方程的解法:去分母→去括号→移项→合并同类项→

系数化成1→解。

2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法

②加减法

四、一元二次方程

1。定义及一般形式:

2。解法:⑴直接开平方法(注意特征)

⑵配方法(注意步骤—推倒求根公式)

⑶公式法:

⑷因式分解法(特征:左边=0)

3。根的判别式:

4。根与系数顶的关系:

逆定理:若,则以为根的一元二次方程是: 。

5。常用等式:

五、可化为一元二次方程的方程

1。分式方程

⑴定义

⑵基本思想:

⑶基本解法:①去分母法②换元法(如, )

⑷验根及方法

2。无理方程

⑴定义

⑵基本思想:

⑶基本解法:①乘方法(注意技巧!!)②换元法(例, )⑷验根及方法

3。简单的二元二次方程组

由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

六、列方程(组)解应用题

一概述

列方程(组)解应用题是中学数学联系实际的一个重要方面。其具体步骤是:

⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

中考数学考点分析

①位置的确定与平面直角坐标系

49、位置的确定

50、坐标变换

51、平面直角坐标系内点的特征

52、平面直角坐标系内点坐标的符号与点的象限位置

53、对称问题:P(x,y)→Q(x,- y)关于x轴对称 P(x,y)→Q(- x,y)关于y轴对称 P(x,y)→Q(- x,- y)关于原点对称

54、变量、自变量、因变量、函数的定义

55、函数自变量、因变量的取值范围(使式子有意义的条件、图象法) 56、函数的图象:变量的变化趋势描述

②一次函数与正比例函数

57、一次函数的定义与正比例函数的定义

58、一次函数的图象:直线,画法

59、一次函数的性质(增减性)

60、一次函数y=kx+b(k≠0)中k、b符号与图象位置

61、待定系数法求一次函数的解析式(一设二列三解四回)

62、一次函数的平移问题

63、一次函数与一元一次方程、一元一次不等式、二元一次方程的关系(图象法)

64、一次函数的实际应用

65、一次函数的综合应用 (1)一次函数与方程综合 (2)一次函数与其它函数综合 (3)一次函数与不等式的综合 (4)一次函数与几何综合

③反比例函数

66、反比例函数的定义

67、反比例函数解析式的确定

68、反比例函数的图象:双曲线

69、反比例函数的性质(增减性质)

70、反比例函数的实际应用

71、反比例函数的综合应用(四个方面、面积问题)

④二次函数

72、二次函数的定义

73、二次函数的三种表达式(一般式、顶点式、交点式)

74、二次函数解析式的确定(待定系数法)

75、二次函数的图象:抛物线、画法(五点法)

76、二次函数的性质(增减性的描述以对称轴为分界)

77、二次函数y=ax2+bx+c(a≠0)中a、b、c、△与特殊式子的符号与图象位置关系

78、求二次函数的顶点坐标、对称轴、最值

79、二次函数的交点问题

80、二次函数的对称问题

81、二次函数的最值问题(实际应用)

82、二次函数的平移问题

83、二次函数的实际应用

84、二次函数的综合应用 (1)二次函数与方程综合 (2)二次函数与其它函数综合 (3)二次函数与不等式的综合 (4)二次函数与几何综合