人教版数学中考考点归纳

李盛老师

人教版数学中考考点归纳

1二次根式:形如式子为二次根式;

性质:是一个非负数;

2二次根式的乘除:

3二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并.

4海伦-秦九韶公式:,S是的面积,p为.

1:等号两边都是整式,且只有一个未知数,未知数的次是2的方程.

2配方法:将方程的一边配成完全平方式,然后两边开方;

因式分解法:左边是两个因式的乘积,右边为零.

3一元二次方程在实际问题中的应用

4韦达定理:设是方程的两个根,那么有

1:一个图形绕某一点转动一个角度的图形变换

性质:对应点到中心的距离相等;

对应点与旋转中心所连的线段的夹角等于旋转角

旋转前后的图形全等.

2中心对称:一个图形绕一个点旋转180度,和另一个图形重合,则两个图形关于这个点中心对称;

中心对称图形:一个图形绕某一点旋转180度后得到的图形能够和原来的图形重合,则说这个图形是中心对称图形;

3关于原点对称的点的坐标

1圆、圆心、半径、直径、圆弧、弦、半圆的定义

2垂直于弦的直径

圆是图形,任何一条直径所在的直线都是它的对称轴;

垂直于弦的直径平分弦,并且平方弦所对的两条弧;

平分弦的直径垂直弦,并且平分弦所对的两条弧.

3弧、弦、圆心角

在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.

4圆周角

在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;

半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径.

5点和圆的位置关系

点在圆外d>r

点在圆上d=r

点在圆内dR+r

外切d=R+r

相交R-r

数学中考考点归纳

1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同

当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的两根.这两点间的距离AB=|x?-x?|

当△=0.图象与x轴只有一个交点;

当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

y=ax^2+bx+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

数学中考考点

抛物线顶点坐标公式

y=ax2+bx+c(a=?0)的顶点坐标公式是(-b/2a,(4ac-b2)/4a)

y=ax2+bx的顶点坐标是(-b/2a,-b2/4a)

相关结论

过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有

①x1_x2=p^2/4,y1_y2=—P^2,要在直线过焦点时才能成立;

②焦点弦长:|AB|=x1+x2+P=2P/[(sinθ)^2];

③(1/|FA|)+(1/|FB|)=2/P;

④若OA垂直OB则AB过定点M(2P,0);

⑤焦半径:|FP|=x+p/2(抛物线上一点P到焦点F距离等于到准线L距离);

⑥弦长公式:AB=√(1+k^2)_│x2-x1│;

⑦△=b^2-4ac;

⑧由抛物线焦点到其切线的垂线距离,是焦点到切点的距离,与到顶点距离的比例中项;

⑨标准形式的抛物线在x0,y0点的切线就是:yy0=p(x+x0)。

⑴△=b^2-4ac>0有两个实数根;

⑵△=b^2-4ac=0有两个一样的实数根;

⑶△=b^2-4ac<0没实数根。