数学学习方法高二整理

孙小飞老师

数学学习方法高二整理1

  每一个学习不良者并不一定真的了解自己的问题之所在,要想对症下药,解决问题,对学习问题进行自我评价便尤其显得重要了。对学习问题可主要从如下几方面进行自我评价:

  l、时间安排问题

  学习不良者应该反省下列几个问题:

  (1)是否很少在学习前确定明确的目标,比如要在多少时间里完成多少内容。

  (2)学习是否常常没有固定的时间安排。

  (3)是否常拖延时间以至于作业都无法按时完成。

  (4)学习计划是否是从来都只能在开头的几天有效。

  (5)一周学习时间是否不满10小时。

  (6)是否把所有的时问都花在学习上了。

  2、注意力问题

  (1)注意力完全集中的状态是否只能保持10至15分钟。

  (2)学习时,身旁是否常有小说、杂志等使我分心的东西。

  (3)学习时是否常有想入非非的体验。

  (4)是否常与人边聊天边学习。

  3、学习兴趣问题

  (1)是否一见书本头就发胀。

  (2)是否只喜欢文科,而不喜欢理科。

  (3)是否常需要强迫自己学习。

  (4)是否从未有意识地强化自己的学习行为。

  4、学习方法问题

  (1)是否经常采用题海战来提高解题能力。

  (2)是否经常采用机械记忆法。

  (3)是否从未向学习好的同学讨教过学习方法。

  (4)是否从不向老师请教问题。

  (5)是否很少主动钻研课外辅助读物。

  一般而言,回答上述问题,肯定的答案(回答“是”)越多,学习的效率越低。每个有学习问题的学生都应从上述四类问题中列出自己主要毛病,然后有针对性地进行治疗。例如一个学生毛病是这样的:在时间安排上,他总喜欢把任务拖到第二夫去做;在注意力问题上,他总喜欢在寝室里边与人聊天边读书;在学习兴趣上,他对专业课不感兴趣,对旁系的某些课却很感兴趣;在学习方法上主要采用机械记忆法。这位学生的病一列出来,我们就能够采取有效的治疗措施了。

数学学习方法高二整理2

  一、温故法

  学习新概念前,如果能对孩子认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。

  二、操作法

  对有些概念的教学,可以从感性材料出发,让孩子在操作中去发现概念的发生和发展过程。

  三、类比法

  这种方法有利于分析两相关概念的异同,归纳出新授内容有关知识;有利于帮助孩子架起新、旧知识的桥梁,促进知识迁移,提高探索能力。

  四、喻理法

  为正确理解某一概念,以实例或生活中的.趣事、典故作比喻,引出新概念.

  五、置疑法

  这种方法是通过揭示教学自身的矛盾来引入概念,以突出引进新概念的必要性和合理性,调动孩子了解新概念的强烈的动机和愿望。

  六、创境法

  如在讲相遇问题时,为让孩子对相向运动的各种可能的情况有所感受,可以从研究"鼓掌时两只手怎样运动"开始。通过拍手体验,在边问、边议中逐步讲解。实践证明,如此使孩子犹如身临其境去体验并理解有关知识,能很快准确地掌握相关的数学概念。

数学学习方法高二整理3

  方法一:直接法

  所谓直接法,就是直接从题设的条件出发,运用有关的概念、定义、性质、定理、法则和公式等知识,通过严密的推理与计算来得出题目的结论,然后再对照题目所给的四个选项来“对号入座”.其基本策略是由因导果,直接求解.

  方法二:特例法

  特例法的理论依据是:命题的一般性结论为真的先决条件是它的特殊情况为真,即普通性寓于特殊性之中,所谓特例法,就是用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有取特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.这种方法实际是一种“小题小做”的解题策略,对解答某些选择题有时往往十分奏效.

  注意:

  在题设条件都成立的情况下,用特殊值(取得越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的较佳策略.近几年高考选择题中可用或结合特例法来解答的约占30%.因此,特例法是求解选择题的好招.

  方法三:排除法

  数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.

  注意:

  排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法,近几年高考选择题中占有很大的比重.

  方法四:数形结合法

  数形结合,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维结合起来,通过对图形的处理,发挥直观对抽象的支持作用,实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.

  方法五:估算法

  在选择题中作准确计算不易时,可根据题干提供的信息,估算出结果的大致取值范围,排除错误的选项.对于客观性试题,合理的估算往往比盲目的准确计算和严谨推理更为有效,可谓“一叶知秋”.

  方法六:综合法

  当单一的解题方法不能使试题迅速获解时,我们可以将多种方法融为一体,交叉使用,试题便能迎刃而解.根据题干提供的信息,不易找到解题思路时,我们可以从选项里找解题灵感.