一、直线与圆:
1、直线的倾斜角 的范围是
在平面直角坐标系中,对于一条与 轴相交的直线 ,如果把 轴绕着交点按逆时针方向转到和直线 重合时所转的最小正角记为, 就叫做直线的倾斜角。当直线 与 轴重合或平行时,规定倾斜角为0;
2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.
过两点(x1,y1),(x2,y2)的直线的斜率k=( y2-y1)/(x2-x1),另外切线的斜率用求导的方法。
3、直线方程:⑴点斜式:直线过点 斜率为 ,则直线方程为 ,
⑵斜截式:直线在 轴上的截距为 和斜率,则直线方程为
4、 , ,① ∥ , ; ② .
直线 与直线 的位置关系:
(1)平行 A1/A2=B1/B2 注意检验(2)垂直 A1A2+B1B2=0
5、点 到直线 的距离公式 ;
两条平行线 与 的距离是
6、圆的标准方程: .⑵圆的一般方程:
注意能将标准方程化为一般方程
7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.
8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.① 相离 ② 相切 ③ 相交
9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形) 直线与圆相交所得弦长
二、圆锥曲线方程:
1、椭圆: ①方程 (a>b>0)注意还有一个;②定义: |PF1|+|PF2|=2a>2c; ③ e= ④长轴长为2a,短轴长为2b,焦距为2c; a2=b2+c2 ;
2、双曲线:①方程 (a,b>0) 注意还有一个;②定义: ||PF1|-|PF2||=2a<2c; ③e= ;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线 或 c2=a2+b2
3、抛物线 :①方程y2=2px注意还有三个,能区别开口方向; ②定义:|PF|=d焦点F( ,0),准线x=- ;③焦半径 ; 焦点弦=x1+x2+p;
4、直线被圆锥曲线截得的弦长公式:
5、注意解析几何与向量结合问题:1、 , . (1) ;(2) .
2、数量积的定义:已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的.数量积,记作a·b,即
3、模的计算:|a|= . 算模可以先算向量的平方
4、向量的运算过程中完全平方公式等照样适用:
三、直线、平面、简单几何体:
1、学会三视图的分析:
2、斜二测画法应注意的地方:
(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴 ox、oy、使∠xoy=45°(或135° ); (2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.
3、表(侧)面积与体积公式:
⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧= ;③体积:V=S底h
⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧= ;③体积:V= S底h:
⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=
⑷球体:①表面积:S= ;②体积:V=
4、位置关系的证明(主要方法):注意立体几何证明的书写
(1)直线与平面平行:①线线平行线面平行;②面面平行 线面平行。
(2)平面与平面平行:①线面平行面面平行。
(3)垂直问题:线线垂直 线面垂直 面面垂直。核心是线面垂直:垂直平面内的两条相交直线
5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)
⑴异面直线所成角的求法:平移法:平移直线,构造三角形;
⑵直线与平面所成的角:直线与射影所成的角
四、导数: 导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)
1、导数的定义: 在点 处的导数记作 .
2. 导数的几何物理意义:曲线 在点 处切线的斜率
①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t) 表示即时速度。a=v/(t) 表示加速度。
3.常见函数的导数公式: ① ;② ;③ ;
⑤ ;⑥ ;⑦ ;⑧ 。
4.导数的四则运算法则:
5.导数的应用:
(1)利用导数判断函数的单调性:设函数 在某个区间内可导,如果 ,那么 为增函数;如果 ,那么为减函数;
注意:如果已知 为减函数求字母取值范围,那么不等式 恒成立。
(2)求极值的步骤:
①求导数 ;
②求方程 的根;
③列表:检验 在方程 根的左右的符号,如果左正右负,那么函数 在这个根处取得极大值;如果左负右正,那么函数 在这个根处取得极小值;
(3)求可导函数最大值与最小值的步骤:
ⅰ求 的根; ⅱ把根与区间端点函数值比较,最大的为最大值,最小的是最小值。
五、常用逻辑用语:
1、四种命题:
⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若 p则 q;⑷逆否命题:若 q则 p
注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。
2、注意命题的否定与否命题的区别:命题否定形式是 ;否命题是 .命题“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.
3、逻辑联结词:
⑴且(and) :命题形式 p q; p q p q p q p
⑵或(or):命题形式 p q; 真 真 真 真 假
⑶非(not):命题形式 p . 真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
“或命题”的真假特点是“一真即真,要假全假”;
“且命题”的真假特点是“一假即假,要真全真”;
“非命题”的真假特点是“一真一假”
4、充要条件
由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。
5、全称命题与特称命题:
短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。
短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号 表示,含有存在量词的命题,叫做存在性命题。
全称命题p: ; 全称命题p的否定 p:。
特称命题p: ; 特称命题p的否定 p:
高二年级数学必修二知识点总结
基本概念
公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4:平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
高二年级数学知识点
空间两条直线只有三种位置关系:平行、相交、异面
按是否共面可分为两类:
(1)共面:平行、相交
(2)异面:
异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为(0°,90°)esp。空间向量法
两异面直线间距离:公垂线段(有且只有一条)esp。空间向量法
若从有无公共点的角度看可分为两类:
(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面
直线和平面的位置关系:
直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行
①直线在平面内——有无数个公共点
②直线和平面相交——有且只有一个公共点
直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
空间向量法(找平面的法向量)
规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角
由此得直线和平面所成角的取值范围为[0°,90°]
最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角
三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直
直线和平面垂直
直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直。直线a叫做平面的垂线,平面叫做直线a的垂面。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
③直线和平面平行——没有公共点
直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
高二数学重点知识点梳理
简单随机抽样的定义:
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
简单随机抽样的特点:
(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为
(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;
(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础。
(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样
简单抽样常用方法:
(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法。
(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率。
四川高考排名125230左右排位文科可以上哪些大学,具体能上什么大学
西南交通大学希望学院和北京农学院哪个好 附对比和区别排名
广东高考排名249380左右排位物理可以上哪些大学,具体能上什么大学
黑龙江高考排名20460左右排位理科可以上哪些大学,具体能上什么大学
湖北高考排名115550左右排位物理可以上哪些大学,具体能上什么大学
长春师范大学和广州大学哪个好 附对比和区别排名
开学第一课英雄不朽心得体会
关于工匠精神的心得体会700字(通用三篇)
教师教育心得体会模板八篇
关于教学实习心得体会8篇
服装员工销售年终总结
单位春游总结
大学生寒假的生活总结怎么写
最新学校安全教育日活动总结范文
幼儿园小班九月份工作心得
音乐学科名师工作室个人总结
贵州高考排名175790左右排位理科可以上哪些大学,具体能上什么大学
山东高考排名557870左右排位综合可以上哪些大学,具体能上什么大学
河南高考排名447200左右排位理科可以上哪些大学,具体能上什么大学
辽宁高考排名97440左右排位物理可以上哪些大学,具体能上什么大学
长春工程学院的水电站设备安装与管理专业排名怎么样 附历年录戎数线
河南高考排名33600左右排位文科可以上哪些大学,具体能上什么大学
湖北高考排名85110左右排位历史可以上哪些大学,具体能上什么大学
河南高考排名321010左右排位文科可以上哪些大学,具体能上什么大学
甘肃高考排名25240左右排位理科可以上哪些大学,具体能上什么大学
四川高考排名277320左右排位理科可以上哪些大学,具体能上什么大学
湖北高考排名108880左右排位物理可以上哪些大学,具体能上什么大学
三亚城市职业学院和漳州理工职业学院哪个好 附对比和区别排名
江西洪州职业学院和无锡职业技术学院哪个好 附对比和区别排名
江西高考排名134360左右排位理科可以上哪些大学,具体能上什么大学
河北高考排名247720左右排位物理可以上哪些大学,具体能上什么大学
河北高考排名47100左右排位历史可以上哪些大学,具体能上什么大学
三门峡职业技术学院的助产专业排名怎么样 附历年录戎数线
江西高考排名105250左右排位文科可以上哪些大学,具体能上什么大学
安徽高考排名38080左右排位文科可以上哪些大学,具体能上什么大学
黑龙江东方学院和广东石油化工学院哪个好 附对比和区别排名
采购部门年终工作总结模板
临床医学个人实习总结
精循营部年终工作总结范文
珠宝工作总结范文
电话销售个人年终总结范文
幼儿园开学总结范本
幼儿园个人校本研修总结
关于立论的知识点总结
医院护理工作年终总结范文
传感器知识点总结
开学典礼大会总结
年度教师个人教学工作总结
消防安全教育周总结
行测答题技巧考生总结
二氧化碳知识点总结