《小数乘小数》优秀教案

莉落老师

《小数乘小数》优秀教案

  《小数乘小数》是小学数学教学一个重点,也是基础数学的重要组成部分,下面是《小数乘小数》优秀教案,我们来看看是怎么对这部分知识进行教导的吧!

  《小数乘小数》优秀教案

  教学内容:

  《小数乘小数》

  教学目标:

  1.使学生理解小数乘小数的算理,掌握计算方法。

  2.使学生经历探索与归纳小数乘小数计算方法的过程。

  教学重点:

  小数乘法的计算法则。

  教学难点:

  小数乘法的算理。

  教学准备:

  课件。

  教学过程:

  (一)复习旧知,铺垫迁移

  1.口算,说一说算式之间有什么联系。

  3×4= 30×40= 300×40=300×4000=

  2.列竖式计算,说一说你是怎样算的。

  3.6×3 0.46×20

  (设计意图:此环节通过安排复习积的变化规律与小数乘整数,为新知识的学习奠定基础。)

  (二)创设情境,探究新知

  1.收集信息,发现问题。

  课件呈现例3情境图。

  (1)学生收集数学信息,自己分析先算什么,再算什么。

  (2)说一说2.4×0.8与前面学习的小数乘整数有什么不同。

  (3)出示课题:小数乘小数。

  (设计意图:从计算“宣传栏的面积”导入,既复习了计算面积的知识,又引出了“小数乘小数”的数学问题。)

  2.尝试计算,引导推理。

  (1)估一估,确定积的范围。

  先估计一下,“2.4×0.8”的积大约是多少。

  把2.4和0.8分别看成最为接近的整数,所以积大约是2平方米。

  (设计意图:在列竖式计算之前先估算,为笔算的'结果确定大致范围。)

  (2)猜一猜,尝试算法。

  根据计算小数乘整数的经验,想一想:用竖式计算小数乘小数可以怎样计算?

  (把两个小数都看成整数,先按整数乘法进行计算,再点上小数点。)

  (3)试一试,体会算理。

  学生尝试列式计算,交流不同的计算方法。

  学生可能出现如下三种情形:

  ①2.4米=24分米0

  .8米=8分米24×8=192(平方分米) 192平方分米=1.92平方米

  组织学生思考、讨论:积是19.2还是1.92,为什么?

  学生可能有两种解释:

  解释一:把2.4米和0.8米分别改写成分米作单位,算出面积是192平方分米,再还原成平方米作单位,所以积是两位小数。

  解释二:运用“积的变化规律”和“小数点移动规律”,计算时把2.4和0.8分别看作24和8,两个因数都乘了10,算出的积192就等于原来的积乘100。为了让积不变,就要把192除以100。

  出示分析推理图。

  看着分析图,引导学生完整叙述整个推理过程。

  小结:两个因数都乘10后,得到的数就等于原来的积乘100,要求原来的积,就要反过来把现在的积除以100,从积右边起数出两位,点上小数点。

  (4)验一验,确定结果。

  通过推理,我们验证了2.4×0.8=1.92,和估计的结果是一致的,积确实是2平方米左右。