对数函数教案模板

李盛老师

对数函数教案模板

  教学目标:

  (一)教学知识点:1.对数函数的概念;2.对数函数的图象和性质.

  (二)能力训练要求:1.理解对数函数的概念;2.掌握对数函数的图象和性质.

  (三)德育渗透目标:1.用联系的观点分析问题;2.认识事物之间的互相转化.

  教学重点:

  对数函数的图象和性质

  教学难点:

  对数函数与指数函数的关系

  教学方法:

  联想、类比、发现、探索

  教学辅助:

  多媒体

  教学过程:

  一、引入对数函数的概念

  由学生的预习,可以直接回答“对数函数的概念”

  由指数、对数的定义及指数函数的'概念,我们进行类比,可否猜想有:

  问题:1.指数函数是否存在反函数?

  2.求指数函数的反函数.

  ①;

  ②;

  ③指出反函数的定义域.

  3.结论

  所以函数与指数函数互为反函数.

  这节课我们所要研究的便是指数函数的反函数——对数函数.

  二、讲授新课

  1.对数函数的定义:

  定义域:(0,+∞);值域:(-∞,+∞)

  2.对数函数的图象和性质:

  因为对数函数与指数函数互为反函数.所以与图象关于直线对称.

  因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.

  研究指数函数时,我们分别研究了底数和两种情形.

  那么我们可以画出与图象关于直线对称的曲线得到的图象.

  还可以画出与图象关于直线对称的曲线得到的图象.

  请同学们作出与的草图,并观察它们具有一些什么特征?

  对数函数的图象与性质:

  图象

  性质(1)定义域:

  (2)值域:

  (3)过定点,即当时,

  (4)上的增函数

  (4)上的减函数

  3.图象的加深理解:

  下面我们来研究这样几个函数:,,,.

  我们发现:

  与图象关于X轴对称;与图象关于X轴对称.

  一般地,与图象关于X轴对称.

  再通过图象的变化(变化的值),我们发现:

  (1)时,函数为增函数,

  (2)时,函数为减函数,

  4.练习:

  (1)如图:曲线分别为函数,,,,的图像,试问的大小关系如何?

  (2)比较下列各组数中两个值的大小:

  (3)解关于x的不等式:

  思考:(1)比较大小:

  (2)解关于x的不等式:

  三、小结

  这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.

  四、课后作业

  课本P85,习题2.8,1、3