全等三角形的优秀教案

马振华老师

  一、教材分析

  本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节.这是全章的开篇,也是全等条件的基础.它是继线段、角、相交线与平行线及三角形有关知识之后出现的.通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用.

  教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法.通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质.

  二、教学目标分析

  知识与技能

  1.了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法.

  2.能准确确定全等三角形的对应元素.

  3.掌握全等三角形的性质.

  过程与方法

  1.通过找出全等三角形的对应元素,培养学生的识图能力.

  2.能利用全等三角形的概念、性质解决简单的数学问题.

  情感、态度与价值观

  通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度.

  三、教学重点、难点

  重点:全等三角形的概念、性质及对应元素的确定.

  难点:全等三角形对应元素的确定.

  四、学情分析

  学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的'分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期.为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识.

  五、教法与学法

  本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合.

  六、教学教程

  Ⅰ.课题引入

  1.电脑显示

  问题:各组图形的形状与大小有什么特点?

  一般学生都能发现这两个图形是完全重合的。

  归纳:能够完全重合的两个图形叫做全等形。

  2.学生动手操作

  ⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。

  ⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?

  (学生分组讨论、提出方法、动手操作)

  3.板书课题:全等三角形

  定义:能够完全重合的两个三角形叫做全等三角形

  “全等”用“≌”表示,读着“全等于”

  如图中的两个三角形全等,记作:△ABC≌△DEF

  Ⅱ.全等三角形中的对应元素

  1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?

  2.学生讨论、交流、归纳得出:

  ⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。

  ⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。

  Ⅲ. 全等三角形的性质

  1.观察与思考:

  寻找甲图中两三角形的对应元素,它们的对应边

  有什么关系?对应角呢?

  (引导学生从全等三角形可以完全重合出发找等量关系)

  全等三角形的性质:

  全等三角形的对应边相等.

  全等三角形的对应角相等.

  2.用几何语言表示全等三角形的性质

  如图:∵ABC≌ DEF

  ∴AB=DE,AC=DF,BC=EF

  (全等三角形对应边相等)

  ∠A=∠D,∠B=∠E,∠C=∠F

  (全等三角形对应角相等)

  Ⅳ.探求全等三角形对应元素的找法

  1.动画(几何画板)演示

  (1).图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?

  归纳:两个全等的三角形经过一定的转换可以重合.一般是平移、翻折、旋转的方法.

  (2).说出每个图中各对全等三角形的对应边、对应角

  归纳:从运动的角度可以很轻松地解决找对应元素的问题.可见图形转换的奇妙.

  3. 归纳:找对应元素的常用方法有两种:

  (1)从运动角度看

  a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.

  b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.

  c.平移法:沿某一方向推移使两三角形重合来找对应元素.

  (2)根据位置元素来推理

  a.有公共边的,公共边是对应边;

  b.有公共角的,公共角是对应角;

  c.有对顶角的,对顶角是对应角;

  d.两个全等三角形最大的边是对应边,最小的边也是对应边;

  e.两个全等三角形最大的角是对应角,最小的角也是对应角;

  Ⅴ.课堂练习

  练习1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,

  你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么 ?

  练习2.△ABC≌△FED

  ⑴写出图中相等的线段,相等的角;

  ⑵图中线段除相等外,还有什么关系吗?请与同伴交

  流并写出来.

  Ⅵ.小结

  1.这节课你学会了什么?有哪些收获?有什么感受?

  2.通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用一些方法可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.

  Ⅶ.作业

  课本第92页1、2、3题