本节课是在七年级上册学习过线、角的有关知识的基础上,进一步研究两直线位置关系的第一课时。对顶角是几何求解、证明中的一个基本图形,同位角、内错角、同旁内角的学习为平行线条件和平行线的特征的基础,所以被本节内容相对简单,但又非常重要。
《相交线》,学生平生第一次遇到几何推理,而且要用数学符号语言表达出逻辑推理的过程,其难度是可以想象的,但是经过这一周的攻坚战,学生的畏难情绪正在渐渐消失,他们从迷茫中慢慢理顺着思路,我看到课堂上一双双眼睛渐渐明亮起来,学生们从几何学习的“悟”中品味到了一点点数学的简洁美、
逻辑推理成功的愉悦感;经历了从认识到害怕、到再认识、到小的成功的过程,学生对几何学习的积极性明显增强,作业质量日渐提高。这一良性变化证明了教学中几点收获:
1、适时多给学生唱赞歌,激励学生的求知欲;学生学得轻松一些。
2、在几何入门教学中,可递进式的逐步提高逻辑推理的严密性;为学生留下思维的缓冲地带,不可一步到位。
3、精心备好几何入门课的同时,并根据学生的学情及时调整优化;使之最贴近学生;练习题作业题的设计上要多下功夫,体现从单一到运用再到综合的循环上升。
4、多对学生的错题进行辨析,多对学情分析反馈;
5、强化困难学生个别辅导,让他们一题一得,落到实处;分层作业,共同提升;
我想突破求新,希望引入设计能比较自然的引出概念并揭示内涵。一开始有个问题纠缠着我,那就是对顶角的大小关系是由位置关系决定的,但是我刚上课就让大家画大小相同的角,合不合乎逻辑。经过反复揣摩,我终于下定决心仍然如此设计。原因是我想首先学生是47中重点班的学生,加上该学校在搞自学模式,所以不会不预习,所以他们会自然想到作角两边的反向延长线得到所求角,另外作反向延长线的过程就是位置决定大小关系的过程,这在他们的`潜意识里存在了。再者我想作为区级观摩课,大家都想听听新鲜的东西,哪怕它不一定好,但至少给各位老师一个讨论的话题和空间,这样就算是课上失败了,也是有所值。于是开头就定下来了。
对于学生上黑板作出的等角,我立即强调相等是观察想象的结果,还需要进一步说明。对顶角的概念出来后,立即找到生活原型,以加强认识,联系生活。在辨别给出图形是否为对顶角的一组题目中,果然如课前所料,学生的几何语言运用不够熟练、严谨,我耐心地纠正,原因是几何开始一定要让学生重视几何语言的表述,养成好习惯。在这个题目中我始终让学生对照定义辨别,加强认识。在第二个问题中,对于如何有条理地不重不漏地找对应角这个问题涉及分类策略问题,为防止跑题,所以简单提及,并未在课堂上解决。
探究对顶角相等这个性质是本课的重难点,所以我的设计是先画图量角,让学生有个感性认识,同时让学生认识到度量是有误差的,所以叫学生记下角的读数,提出可不可以根据一个角的度数,计算出其对顶角的度数这样一个问题。其实这个问题设计是承上启下的,因为证明比较困难,所以通过具体的度数计算以作铺垫。结果证明这个设计是利于学生的思考的,因为在证明时我听到他们说出“和刚才计算一样”的话。
练习题的设置一来是巩固,二来是让学生体会转化思想。圆锥顶角的测量设计是学生很感兴趣的,它具有相当的挑战性。在预设中,学生会有不同的设计,结果也是如此,他们想了很多和本节课知识联系不大的设计,比如测母线长和底面圆的直径并还原画出横截面等腰三角形,然后测顶角等等,反应了学生思维的灵活性,为鼓励求异思维和创新思想,我对此表示认可和鼓励。
由于课前 张继兵老师叮嘱我精心准备,并为我提供了很多帮助,因此本节课堂预设是充分的,课堂生成是自然的。通过这节课让我体会到越是看起来简单的课,越是要精心钻研教材,挖掘其在教材中的地位和蕴含的数学思想。
课堂教学永远是动态的辩证的,对于这样“反传统”的引入设计到底弊利几何,在圆锥顶角测量中要不要引导学生想到利用对顶角知识?给定直尺这样的工具到底是引导还是暗示都需要反复考虑,合理取舍。希望自己能通过公开课公开暴露问题,以求更多的同行给我更多的建议和帮助。
成功之处:本节课是在七年级上册学习过线、角的有关知识的基础上,进一步研究两直线位置关系的第一课时.对顶角是几何求解、证明中的一个基本图形,其中对顶角相等也是证明中常用的结论,以此实现角之间的相互转化.内容相对简单,但又非常重要.对于学生上黑板作出的等角,我立即强调相等是观察想象的结果,还需要进一步说明.对顶角的概念出来后,立即找到生活原型,以加强认识,联系生活.在辨别给出图形是否为对顶角的一组题目中,果然如课前所料,学生的几何语言运用不够熟练、严谨,我耐心地纠正,原因是几何开始一定要让学生重视几何语言的表述,养成学习几何的好习惯.在这个题目中我始终让学生对照定义辨别,加强认识.探究对顶角相等这个性质是本课的重难点,所以我的设计是先画图量角,让学生有个感性认识,同时让学生认识到度量是有误差的,所以叫学生记下角的读数,提出可不可以根据一个角的度数,计算出其对顶角的度数这样一个问题.其实这个问题设计是承上启下的,因为证明比较困难,所以通过具体的度数计算以作铺垫.结果证明这个设计是利于学生的思考的,因为在证明时我听到他们说出“和刚才计算一样”的话.练习题的设置一来是巩固,二来是让学生体会转化思想.
不足之处:本节课通过对比教学学生对概念的理解及简单的一些推理说明基本能掌握,但可能是课堂上没有照顾到所有的学生导致部分学习有困难的孩子对推理说明类似的题目在解题过程中出现乱、繁等现象(个别学生甚至无法下手).课后要根据实际情况及时进行补差补缺,争取不让一个孩子掉队.
课的开始,由于小学阶段学生已经接触过了平行线,我从观察街道上的十字路口,展示两条路相交的情景,引入课题,从而增强学生学习活动的亲切感,同时也把学生推向主体学习地位。这为引出本课的学习内容做了铺垫。
在课堂中,让学生回顾角的知识,让学生从角的顶点和两边入手去寻找对顶角的特征,让学生有明确的方向向教学目标靠拢。在寻找对顶角的练习中明确指出两条相交线就可以组成两组对顶角,这为最后的合作探究奠定了基础。在探究对顶角的性质的时候,引导学生从已学的知识推倒对顶角相等,这符合学生的思维学习过程。在讲解例2的过程中,让学生思考并让学生分析解题的思路,并将学生的解题思路和正确答案进行结合并板演,这为习题的解题过程书写提供了格式。在合作探究时,先告知学生在寻找对顶角组数时应先明确两条相交线就可以组成两组对顶角,这与前面前后呼应,最终总结出寻找对顶角的方法。最后学生总结这节课的收获,使学生回顾一节课的重点和难点,起到强调巩固作用。
此外本节课还存在诸多的不足之处:
1.在提出问题的时候,学生的思考时间较少,只有程度较好的学生思考出来,大部分学生都还在思考中。
2.欠缺对“学困生”的关注,没能用更好的语言激发他们。
3.没能让每位学生都有足够的时间发表自己的观点。
4.没能进行很好的知识延伸和拓展。
5.合作探究的题目有一定的难度,大多数学生还是没能研究出结果。
河南高考排名243480左右排位理科可以上哪些大学,具体能上什么大学
广西高考排名212400左右排位理科可以上哪些大学,具体能上什么大学
广东高考排名85850左右排位物理可以上哪些大学,具体能上什么大学
陕西高考排名150120左右排位理科可以上哪些大学,具体能上什么大学
福建高考排名3220左右排位历史可以上哪些大学,具体能上什么大学
河北高考排名114880左右排位物理可以上哪些大学,具体能上什么大学
苏教版三年级语文下册剪枝的学问的教学反思
音乐教学反思汇编十五篇)
蜜蜂引路教学反思五篇
矩形教学反思范文
苏教版三年级语文下册剪枝的学问的教学反思
音乐教学反思汇编十五篇)
蜜蜂引路教学反思五篇
四年级数学小数的读法和写法教学反思范文
部编版五年级语文教学反思(精选六篇)
人教版小学一年级数学下册读数和写数课后的教学反思(通用五篇)
重庆高考排名14250左右排位历史可以上哪些大学,具体能上什么大学
河北高考排名141780左右排位历史可以上哪些大学,具体能上什么大学
贵州高考排名122910左右排位文科可以上哪些大学,具体能上什么大学
河南高考排名13840左右排位文科可以上哪些大学,具体能上什么大学
四川电影电视学院和沈阳大学哪个好 附对比和区别排名
考浙江东方职业技术学院要多少分山西考生 附2024录取名次和最低分
云南高考排名44990左右排位理科可以上哪些大学,具体能上什么大学
黑龙江高考排名95680左右排位理科可以上哪些大学,具体能上什么大学
安徽高考排名91690左右排位理科可以上哪些大学,具体能上什么大学
岳阳职业技术学院的医学检验技术专业排名怎么样 附历年录戎数线
文山学院和韶关学院哪个好 附对比和区别排名
海南高考排名4000左右排位综合可以上哪些大学,具体能上什么大学
沈阳科技学院和广州软件学院哪个好 附对比和区别排名
重庆交通大学的能源与动力工程专业排名怎么样 附历年录戎数线
山东高考排名438500左右排位综合可以上哪些大学,具体能上什么大学
广东高考排名49880左右排位物理可以上哪些大学,具体能上什么大学
辽宁财贸学院和新疆农业大学哪个好 附对比和区别排名
青海高考排名16830左右排位理科可以上哪些大学,具体能上什么大学
广东高考排名224680左右排位物理可以上哪些大学,具体能上什么大学
皖西学院和山西中医药大学哪个好 附对比和区别排名
草原教学反思十五篇)
小班教学反思汇编十五篇)
指数函数教学反思
五年级语文草船借箭教学反思
景阳冈教学反思十五篇)
矩形教学反思范文
人教版八年级数学下册平行四边形的判定第一课时教学反思
直线与圆的位置关系教学案例及反思
教学反思应该反思什么呢
明天我们毕业课文反思
卖火柴的小女孩第一次执教教学反思
长方形的面积教学反思六篇
烟台的海教学反思范文450字
两位数减一位数和整十数教学反思模板
飞旋的陀螺教学反思范文(精选六篇)