“找次品”是人教版数学五年级下册第七单元数学广角的内容。这节课中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有唯一的一个次品。
在教学内容上安排了两个例题:例1通过利用天平找出5件物品中的1件次品,让学生初步认识“找次品”这类问题基本的解决手段和方法。例2的待测物品数量为9个,在实验上具有承前启后的作用。便于学生与例1的结果进行对比,从而总结出解决该问题的一般思路。
在授此课时,通过身边生活实例,为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。设计这一环节,联系生活实际,可以激起孩子们学习的兴趣,让学生充分感受到数学与日常生活的密切联系。能使学生肯动脑、想参与、乐学习。
按照例题,本课例1是从5瓶钙片中找到次品,而我却让同学们先从3瓶口香糖中找出次品,这样就降低了教学起点,学生很容易的从3个中找到次品。那么在后面的5瓶、9个中找次品就容易多了。不会产生挫败感,增加成功的体验,使本课更容易进行。
本课我让同学们从3个中找出次品这比较简单,然后加深到从5个、9个中找次品,并且在9个中找次品的过程中渗入优化思想,让孩子们寻找优化策略,接下来让学生再用27进行验证,加深了学生的体验。整个教学过程注重让学生经历了探索知识的过程,使他们知道这些知识是如何被发现的,结论是如何获得的。在此过程中知识层层推进,步步加深,让孩子的推理能力慢慢地达到一定的高度,思维也不至于感到困难。
在教学过程中,我充分的运用了研究性学习的教学方法,不把现成的答案或结论告诉给学生,而是试图创设出问题情境,引发学生认知上的矛盾、冲突,激起学生探求知识经验和事理的欲望,继而调用已有的知识经验和生活积累,提出解决问题的猜想和策略,并通过观察、实验、操作、讨论、思索等多种活动进行研究检验。在研究性数学学习中,知识不再是被学生消极接受的,而是学生自身积极地、主动地去探求获取的。学生在教育教学中是发现者、研究者,充分体现学生的主体地位。
想快捷准确解决此类型问题,教师可以用五分钟左右的时间向学生灌输结论性的解题方法,即每次尽量将物品平均分成3份(如不能平均分时,也应使每份的相差数不大于1),然后用大量时间让学生进行巩固练习,强化这种方法。这样的教学虽然短时高效,但却只重结论,忽视了学生探索精神的培养,学生少了发现后的欣喜与快乐,缺乏比较、综合等思维能力的锻炼。为此,我今天给予学生充足的时间去独立探索、尽量地显现他们的不同称法,最后通过对比发现了结论。这样的教学显然费时较多,练习二十六第4、6、7题都没能在单元时间内完成,必须再增加一个课时练习课,但学生们学得开心,思维十分活跃。
在教学例2时,学生们发现9个物品不可能按教材所说分成4份(2,2,2,3)放在天平上称。因为将其中两个2放在天平上称过以后,剩下的2与3是不同能可时放在天平两边的,所以这种分法应该改为分成5份,即(2,2,2,2,1)。而这种方法实质与9分成4,4,1是一致的。因此,学生认为教材这种分法不合理。不知大家怎么认为?
因为9不能平均分成两份,因此学生们普遍选择了分3份。个性化解法丰富多彩,除了教材中提到的4,4,1;3,3,3外,还有2,2,5和1,1,7两种不同分法。这些分法中除平均分成3份以外的分法外,其它都至少需要称3次才能保证找出次品,所以通过观察比较,学生自己发现了解决问题的策略。一是把待分的物品分成3份;二是要分得尽量平均,能够平均分的平均分成3份,不能平均分的,也应使多的与少的一份只差1。
最后总结规律:“只要记住物品总数在2——3之间,需要称1次就能保证找出次品;在4——9之间,需要称2次;在10——27之间,需要称3次……。”我引导学生独立阅读137页的“你知道吗”。大家普遍认为这种方法好,如果是填空题可以根据表格快速填写,节省时间;如果是解决问题,可以根据表格核对自己的结果。但记不住数据怎么办?“从上表你能发现什么规律吗?”一石激起千层浪,对照数据寻记忆窍门。果然,不一会儿功夫,刘思源同学就发现了隐藏的规律。“要辨别的物品数目2——3;4——9;10——27;28——81……”,这里的后一个数3,9,27,81都是不断乘3得来的。因此,只需记住第一组数据,然后将3依次乘3,即可得到每组数据的第二个数,第一个数则是前一组数据中第二个数+1得到的。
《找次品》是人教版数学五年级下册第七单元数学广角的内容。本节课以找次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会缩小待测物品范围的优化策略。初步培养学生的应用意识和解决实际问题的能力。
对传统设计思想的分析
传统设计一般是首先找5个零件中的次品(目标:在认识平衡与不平衡两种可能结果的基础上引导学生画框图,经历逻辑推理的过程);再找9个零件(目标:找到最优称法,形成猜想);然后称8个,27个,探索规律;最后称100个、243个零件(目标:继续学习化归方法,找到零件个数与称的次数之间的关系)。这种设计从过程来看体现了操作----猜测----验证----归纳----应用的教学思路,它的`重点放在学生优化方案的比较上。这样设计有两个弊端。
问题一:按这种单刀直入式进行研究,因学生的知识和方法储备不够、跨度过大,思维难以突然从方法多样性提升到最优化策略上来,学生的思维容易断层,探究会屡屡受挫,从而造成对此类问题的探究兴趣不足,影响学生思维的主动性。
问题二:在9个物品中找次品的探究过程中,让学生猜想最佳策略:分三堆,每堆尽量同样多的规律,学生不容易找出来,再让学生举例验证更难。学生探究的多样化一方面暴露了学生的思考过程,另一方面也影响了学生对最佳策略的关注。如何通过优化策略的形成,提升学生的思维品质,高老师进行了如下的探索。
探索适合学情的实践尝试
1、巧:游戏互动做铺垫--巧妙渗透优化思想
在学生的猜数过程中,高老师总让学生处于最不利的处境,除非他选择了最佳策略,否则猜的次数总是最多。高老师心中想的数不是固定的,是根据学生的猜在不断的变化,也就是说,一开始他心中并没有想好一个具体的数。让最不利发挥到极致时,学生就会最大限度地理解策略的重要性。通过找中间数,学生认识到运用缩小范围猜数可以提高效率,让学生在无意识的猜数游戏中感悟快速猜数的方法与策略。
2、趣:交流策略多样化---引出优化方法
有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。我让学生用肢体模拟天平来进行实践探究,学生非常感兴趣。高老师放手让学生探究3个、5个测品中找一个次品,体现策略多样化,引出优化的方法,分三原则。图示法较为抽象,对学生来说不容易理解,教学时我根据学生的回答同步板书,即外显了学生的思维痕迹,又便于学生理解每项数据的含义,为后续的学习打下一定的基础。
3、实:打破常规设悬念---激起优化需求
如果说数学思想方法是可以传授的话,那教师肯定是把其中富有思考意义的东西机械化了,这样就失去了它应有的价值。所以渗透优化思想一定要让学生经历了自主体验和反思顿悟的过程。本节课高老师打破常规,让学生大胆猜测:如果有2187个测品中找一个次品,你认为至少称几次保证找到这个次品?要想解决这个问题,你觉得有什么办法?(把数据变小些,并举例研究。)激起学生优化需求,学生也从中认识到以退为进是一种很好的学习策略,为渗透化繁为简的数学思想走好了坚实的一步。
4、准:找准盲区巧点拨---形成优化策略
学生挑战在100个中找次品时,高老师及时点拨引导——当遇到一个问题时,我们迈出第一步至关重要。结合课前游戏,借鉴缩小范围的策略。小组合作拟订第一步怎么办?的计划。当出现分2份和3份的对比分析时,我又适时提问导引:是不是分的份数越多越好呢?让学生在例证中归纳出将待测物品尽量等分成三份的规律来。用准时点拨为学生扫清思维盲区,为优化策略的形成搭桥铺路。
探索实践后的启示与思考
启示一:发展才是硬道理。在备这课时,高老师也考虑到用天平来操作演示,但由于现场条件的限制----没有准备现成的天平;同时又考虑到学生用天平来称在操作上也会很麻烦,以前对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的掌握,在此处多用时间有喧宾夺主、影响主题的嫌疑,因此他在本节课中没有把实物天平带进课堂,而是让学生用自己的肢体演示代替天平操作。只要能让学生得到发展,删繁就简是很划算的。
启示二:万丈高楼平地起。解决再难的问题,丰实基础是至关重要的。为了让学生的思维顺利由方法的多样性转向最优化,高老师在教材例1之前增设在3个中找次品的环节,目的有二:
1、走实第一步。在这一环节中让学生重温天平的结构和用法,收集平衡与不平衡所反映的信息,为后续研究储备能量。
2、强化和预示方法。通过在3个中找次品的演练,引起学生思维方法的先入为主趋势,同时也顺应了学生的学习从模仿开始的习惯。要想学生的思维提升的更高,必须把思维的基础打得最牢。
思考一:经历了本堂课的预设与生成后,对于本课这样有一定难度的教学内容,教到怎样一个度是最合适的?
思考二:这节课中,对于最佳策略的成因还有没有更好的、更有说服力的解释方法呢?
古希腊数学家毕达哥拉斯说过,在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。从高老师的数学课中,我们领悟到了这样的理念:通过数学学习,领悟数学思想和方法,提升学生的思维品质。
一、尽量体现教材意图。
《找次品》是新课标人教版教材五年级下册数学广角中的内容,优化时一种重要的数学思想方法,可有效地分析和解决问题。本单元主要以“找次品”这一操作活动为载体,让学生通过观察、实验来体会解决问题的多样性,在此基础上,通过推理的方法运用优化解决问题的有效性。
二、尽量体现“数学味”。
数学味或者说数学化是现在数学课堂提倡的理念,是我们所追求的。那么,怎样体现出数学味呢?怎样运用数学的眼光观察与认识生活中常见的数学问题呢?教师在本节课作了一些努力,例如:出示5件物品,找出其中的一件次品。让学生经历多次观察、比较、分析,在师生之间的交流和互动中,加强横向与纵向数学化的过程,使学生能从找次品的具体实例中初步了解蕴含其中的一些简单信息。
三、尽量体现方法渗透。
本节课中教者还力图渗透一些基本的学习方法,观察、比较、分析、猜测等方法贯穿整节课。我觉得,如果单单让学生获得一些有关找次品的知识似乎意义不大,而日常生活中的很多问题也不可能在一节课中一一认识,只有具备了一双善于发现的眼睛和一颗乐于探索的心,才能更多更好的学会找次。
“找次品”是五年级下学期数学广角里的教学内容,属于一节思维训练课,主要培养学生的优化意识和逻辑推理能力,同时掌握找次品的最优方法。这节课我在认真分析教材的基础上,并根据学生的认识规律和思维方式进行了设计,反思整节课。
接到期末考试的时间,确实有点紧,在请教有经验的老师怎样讲的前提下,直接让学生讨论找次品的最优方法。学生说:“分组法最省时间。”我直接说:“好!下面讨论怎样分组最优方案。”
“我总结出来了,分成三份。”
“当待测物品的数量是3的倍数时,把待测物品平均分成三份,能保证用最少的次数找出次品。要平均分成三份哦!”
“说的很到位,谁还有补充。”
“当待测物品的数量不是3的倍数时,也把待测物品分成3份,每份个数尽可能接近,使多的一份与少的1份只相差1。”
“补充的很全面,把樊静祎与刘懿贤的加起来就是找次品的规律。”
“好,下面咱们来实战一下!”
让学生把小状元拿出来,开始做!由于刚才讲的快,所以让学生说答案的时候必须说思路。
没有想到,孩子们掌握的这么好!心里窃喜。
找次品”的教学内容本来是在“奥数”活动中有时出现的,现在青岛版教材五年级下册数学与生活中选入,对培养学生动手能力和思维能力都是比较好的课。课本主要以“找次品”这一学习活动为载体,让学生在具体的学习活动中渗透“优化”的教学思想方法。
在教学中,我先让学生掌握用天平找“5个零件的次品”的方法后,我让学生猜想,如果9个物品中也有一个次品,几次一定能找到?学生设想了好几种方案,我采用分组检验,看谁的速度快。通过评价巧妙地把寻找最优方案蕴涵在竞赛活动中,极大地调动了学生主动参与学习的积极性。在引导下,学生通过观察、对比、讨论,发现了把待测物品平均分成三份的最优方案。随后我又提出8个物品中找次品由学生独立设计法案,在多种方案的比较中发现,如果待测物品不能平均分成三份,则要分得尽量平均。
新教材中的“数学广角”一直是教师感叹难教、学生感觉难学的内容,这次“找次品”也不例外。为了让学生低起点,拾级而上,我将例1单独作为一课时来教学。反思本课教学,有成功也有困惑:
一、两处成功
1.注重学生的自主探索
想快捷准确地解决此类型问题,教师可以用五分钟左右的时间向学生灌输结论性的解题方法,即每次尽量将物品平均分成3份(如不能平均分时,也应使每份的相差数不大于1),然后用大量时间让学生进行巩固练习,强化这种方法。
这样的教学虽然短时高效,但却只重结论,忽视了学生探索精神的培养。苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,就是希望感到自己是一个发现者,研究者,探索者,而在儿童的精神世界中,这种需要特别强烈”教学中教师是学生学习的组织、引导者、合作者,而非知识的灌输者,因而对一个问题的解决,不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,让学生在积极思考、大胆尝试、主动探索中,获取成功并体验成功的喜悦。
为此,我给予学生充足的时间去独立探索、尽量地显现他们的不同称法,最后通过对比发现结论。如我首先安排了从2~8个零件中找次品,采取学生动手实践、小组讨论、猜想探究的方式教学。要求学生说出各种找次品的方法,从而让学生感受解决问题策略的多样性;其次安排了9个零件,通过小组合作交流,的学习方式。并要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。如分几份最好?每份几个最好?引导学生发现把零件分成3份称的方法最好,进一步认识“找次品”这类问题,探索解决问题的最优方法。
2.重视“数学化”。
用语言描述找次品过程,当遇到使用天平次数较多时,叙述起来十分麻烦。在例1教学过程中,学生们更乐意用绘制简单天平示意图的方式表示找的过程。可是随着物品个数的增加,这种方式虽然形象直观,但毕竟不方便。“繁”则思变,教材137页第5题用简单文字加箭头的方式清晰描述过程10个物品分成3份:3个、3个、4找次品。这种方式比画天平简洁得多,但有没有更简便的记录方式呢?《教参》中为我们介绍了一种树形图。这种树形图用小括号代替了“把物品分成几份,每份分别是几”的叙述,一目了然。同时还吸收了箭头示意图的优点,用两个分支表示称得的不同结果。但我觉得“天平两边各放3个”这类语言能否符号化,使图示更具有数学味,也更简洁。当天平两边各放3个平衡时,再将4个物品分成3份,1、1、2,后面也应按前面格式写明“天平两边各放1个”,接着按平衡或不平衡分析,这样思维才能完整体现。经过自己的修改,我将树形图改为如下格式:
我通过在两个数字下划线的方式代表“将这两堆物品分别放在天平两边”,这样既减少了文字,又方便最后统计次数。每种情况,最后只需数一数共划了多少条横线即可,既准确、又形象。
二、两点困惑
其一、找次品的题目一般都是求“至少称几次就一定能找出次品”,在使用树形图记录中,是否必须在最后标明谁是次品。即上图是否必须像这样写:
其二、当所分物品是偶数个(如4、6、8)时,我发现学生更亲睐于将其平均分成2份。这种分法在总数是4和6时,并不影响最少次数,但如果是8个物品时,如果平均分成2份,则至少需要3次,而如果分成3份(3、3、2),则只需要2次就可以找出次品。所以,要引导学生发现规律:应尽量将物品分成3份,能够更好找出次品“找次品”显得有些牵强。在练习中,有部分学生仍旧痴迷于平均分成2份的方法,在“做一做”中就有部分学生将10分成5和5,用这种分法同样也能做出正确结果,这时教师该怎样评价?
河南高考排名243480左右排位理科可以上哪些大学,具体能上什么大学
广西高考排名212400左右排位理科可以上哪些大学,具体能上什么大学
广东高考排名85850左右排位物理可以上哪些大学,具体能上什么大学
陕西高考排名150120左右排位理科可以上哪些大学,具体能上什么大学
福建高考排名3220左右排位历史可以上哪些大学,具体能上什么大学
河北高考排名114880左右排位物理可以上哪些大学,具体能上什么大学
圆教学反思三篇
飞夺泸定桥的教学反思范文
蟋蟀的住宅教师教学反思范文(通用9篇)
北风和小鱼教学反思范文
圆教学反思三篇
飞夺泸定桥的教学反思范文
蟋蟀的住宅教师教学反思范文(通用9篇)
四年级数学小数的读法和写法教学反思范文
部编版五年级语文教学反思(精选六篇)
人教版小学一年级数学下册读数和写数课后的教学反思(通用五篇)
重庆高考排名14250左右排位历史可以上哪些大学,具体能上什么大学
河北高考排名141780左右排位历史可以上哪些大学,具体能上什么大学
贵州高考排名122910左右排位文科可以上哪些大学,具体能上什么大学
河南高考排名13840左右排位文科可以上哪些大学,具体能上什么大学
四川电影电视学院和沈阳大学哪个好 附对比和区别排名
考浙江东方职业技术学院要多少分山西考生 附2024录取名次和最低分
云南高考排名44990左右排位理科可以上哪些大学,具体能上什么大学
黑龙江高考排名95680左右排位理科可以上哪些大学,具体能上什么大学
安徽高考排名91690左右排位理科可以上哪些大学,具体能上什么大学
岳阳职业技术学院的医学检验技术专业排名怎么样 附历年录戎数线
文山学院和韶关学院哪个好 附对比和区别排名
海南高考排名4000左右排位综合可以上哪些大学,具体能上什么大学
沈阳科技学院和广州软件学院哪个好 附对比和区别排名
重庆交通大学的能源与动力工程专业排名怎么样 附历年录戎数线
山东高考排名438500左右排位综合可以上哪些大学,具体能上什么大学
广东高考排名49880左右排位物理可以上哪些大学,具体能上什么大学
辽宁财贸学院和新疆农业大学哪个好 附对比和区别排名
青海高考排名16830左右排位理科可以上哪些大学,具体能上什么大学
广东高考排名224680左右排位物理可以上哪些大学,具体能上什么大学
皖西学院和山西中医药大学哪个好 附对比和区别排名
草原教学反思十五篇)
小班教学反思汇编十五篇)
指数函数教学反思
五年级语文草船借箭教学反思
景阳冈教学反思十五篇)
北风和小鱼教学反思范文
七年级数学平行线的判定教学反思
三年级面积和面积单位的教学反思三篇
守株待兔教师教学反思十篇
四年级温度计教学反思范文
英语教学反思与总结
将地理反思贯穿于教学全过程的教育论文
苏教版四年级上册维生素C的故事教学反思
一年级下册梅兰芳学艺的教学反思
关于疫情期间线上教学反思心得