高考常考的数学公式整理归纳学生必看

孙小飞老师

高考数学重要公式

等差数列

(1)数列的通项公式an=f(n)

(2)数列的递推公式

(3)数列的通项公式与前n项和的关系

an+1-an=d

an=a1+(n-1)d

a,A,b成等差 2A=a+b

m+n=k+l am+an=ak+al

等比数列 常用求和公式

an=a1qn_1

a,G,b成等比 G2=ab

m+n=k+l aman=akal

不等式

不等式的基本性质 重要不等式

a>b b

a>b,b>c a>c

a>b a+c>b+c

a+b>c a>c-b

a>b,c>d a+c>b+d

a>b,c>0 ac>bc

a>b,c<0 ac

a>b>0,c>d>0 ac

a>b>0 dn>bn(n∈Z,n>1)

a>b>0 > (n∈Z,n>1)

(a-b)2≥0

a,b∈R a2+b2≥2ab

|a|-|b|≤|a±b|≤|a|+|b|

高考数学常用公式

秦九韶三角形中线面积公式

S=√[(Ma+Mb+Mc)_(Mb+Mc-Ma)_(Mc+Ma-Mb)_(Ma+Mb-Mc)]/3

其中Ma,Mb,Mc为三角形的中线长.

平行四边形的面积=底×高

梯形的面积=(上底+下底)×高÷2

直径=半径×2 半径=直径÷2

圆的周长=圆周率×直径=

圆周率×半径×2

圆的面积=圆周率×半径×半径

长方体的表面积=

(长×宽+长×高+宽×高)×2

长方体的体积 =长×宽×高

正方体的表面积=棱长×棱长×6

正方体的体积=棱长×棱长×棱长

圆柱的侧面积=底面圆的周长×高

圆柱的表面积=上下底面面积+侧面积

圆柱的体积=底面积×高

圆锥的体积=底面积×高÷3

长方体(正方体、圆柱体)

的体积=底面积×高

平面图形

名称 符号 周长C和面积S

正方形 a—边长 C=4a

S=a2

长方形 a和b-边长 C=2(a+b)

S=ab

三角形 a,b,c-三边长

h-a边上的高

s-周长的一半

A,B,C-内角

其中s=(a+b+c)/2 S=ah/2

=ab/2?sinC

=[s(s-a)(s-b)(s-c)]1/2

=a2sinBsinC/(2sinA)

高考数学万能公式

概率公式

定义:p(A)=m/n,全概率公式(贝页斯公式)某事件A是有B,C,D三种因素造成的`,求这一事件发生的概率p(A)=p(A/B)p(B)+p(A/C)p(C)+p(A/D)p(D)其中p(A/B)叫条件概率,即:在B发生的情况下,A发生的概率

诱导公式

弧度制下的角的表示:

sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)sec(2kπ+α)=secα (k∈Z)csc(2kπ+α)=cscα (k∈Z)

角度制下的角的表示:

sin (α+k·360°)=sinα(k∈Z)cos(α+k·360°)=cosα(k∈Z)tan (α+k·360°)=tanα(k∈Z)cot(α+k·360°)=cotα (k∈Z)sec(α+k·360°)=secα (k∈Z)csc(α+k·360°)=cscα (k∈Z)

对数的基本性质

如果a>0,且a≠1,M>0,N>0,那么:1.a^log(a)(b)=b2.log(a)(a)=13.log(a)(MN)=log(a)(M)+log(a)(N);4.log(a)(M÷N)=log(a)(M)-log(a)(N);5.log(a)(M^n)=nlog(a)(M)6.log(a)[M^(1/n)]=log(a)(M)/n

定积分

形式为∫f(x) dx (上限a写在∫上面,下限b写在∫下面)。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个数,而不是一个函数。

常见函数的导数公式

① C'=0(C为常数函数)② (x^n)'= nx^(n-1) (n∈Q);③ (sinx)' = cosx④ (cosx)' = - sinx⑤ (e^x)' = e^x⑥ (a^x)' = (a^x) _ Ina (ln为自然对数)⑦ (Inx)' = 1/x(ln为自然对数 X>0)⑧ (log a x)'=1/(xlna) ,(a>0且a不等于1)⑨(sinh(x))'=cosh(x)⑩(cosh(x))'=sinh(x)

三角不等式

-|a|≤a≤|a||a|≤b<=>-b≤a≤b|a|≤b<=>-b≤a≤b|a|-|b|≤|a+b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a|-|b|≤|a-b|≤|a|+|b||z1|-|z2|-...-|zn|≤|z1+z2+...+zn|≤|z1|+|z2|+...+|zn||z1|-|z2|-...-|zn|≤|z1-z2-...-zn|≤|z1|+|z2|+...+|zn||z1|-|z2|-...-|zn|≤|z1±z2±。..±zn|≤|z1|+|z2|+...+|zn|

数学数列

等差数列通项公式:an﹦a1﹢(n-1)d等差数列前n项和:Sn=[n(A1+An)]/2 =nA1+[n(n-1)d]/2等比数列通项公式:an=a1_q^(n-1);等比数列前n项和:Sn=a1(1-q^n)/(1-q) =(a1-a1q^n)/(1-q) =a1/(1-q)-a1/(1-q)_q^n (n≠1)