最新人教版小学六年级数学上册总复习教案范文

黄飞老师

最新人教版小学六年级数学上册总复习教案范文1

教学目标:

1、让学生在已有的分数乘整数的基础上,通过小组合作,自主探究建构,使学生理解一个数乘分数的意义,掌握分数乘分数的计算方法,能够应用分数乘分数的计算法则,比较熟练地进行计算。

2、让学生在合作学习、汇报展示、互动交流中,体验学习带来的喜悦,培养学生的学科兴趣和学习能力。

3、让学生在课堂学习中感悟到数学知识的魅力,领略到美。

教学重点:让学生理解一个数乘分数的意义,掌握分数乘分数的计算方法。

教学难点:总结分数乘分数的计算方法。

教学过程:

一、复习引入,提出学习目标。

1、复习。

计算下列各题并说出计算方法。

1/10×  5/8×5 3/7×

上面各题都是分数乘以整数,说一说分数乘整数的意义。

2、揭题:分数乘分数

3、提出学习目标。

让学生先说一说,再出示学习目标

(1)一个数乘分数的意义与分数乘整数的意义是否相同。

(2) 分数乘分数的计算方法

二、展示学习成果。

1、小组内个人展示

学生独立自学、完成课本10页例3、“做一做”(教师相机进行指导,收集学生的学习信息,重在让学生展示不同的思维方法和错例,特别是引导小组内学生之间的交流与探讨)

2、全班展示

(1)一个数乘分数的意义展示

1/5×3/4就是求1/5的3/4是多少; 1/3×1/4就是求1/3的1/4是多少

(2)算法展示

生1:不能约分,直接分子乘分子,分母乘分母。

1/5×3/4=1×3/5×4=3/20

生2:先计算出结果,再进行约分。

8/9×3/10=8×3/9×10=24/90=4/15

生3:在计算过程中能约分的先约分,再计算。

8/9×3/10 3与9先约分,8与10先约分,再计算。

2)比较二、三两种计算方法,选择算法。

通过对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。

(3)错例展示:

错例1:约分后,把分子与分子相加,分母与分母相加; 错例2:学生没把计算结果约成最简分数。

3、学生质疑问难,激发知识冲突。

(1)针对同学的展示,学生自由质疑问难。

(2)教师引导学困生提出问题:同学们,你在学习中碰到困难了吗?能把你遇到的困难说给大家听吗?那你对同学的展示有什么想法与建议吗?

4、引导归纳一个数乘分数的意义和计算方法。

(1)意义:一个数乘分数,表示求这个数的几分之几是多少。

(2)计算法则:分数乘分数,用分子乘分子,分母乘分母,能约分的先约分,再计算。

三、拓展知识外延

1、完成课本12至13页练习二第3、6题。

2、生活中的数学

(1)一个长方形长3/5分米,宽1/2分米,它的周长、面积各是多少?

(2)用三个同样大小的正方形可以拼成一个新的图形。如果正方形的边长是3/5 分米,那么拼成的新图形的周长是多少?

四、总结反思,激励评价。

五、布置作业:

1、列式计算

(1)的是多少?

(2)千克的是多少?

(3)小时的是多少?

2、智力冲浪:甲乙两个仓库,甲仓存粮30吨,如果从甲仓中1/5取出放入乙仓,则两仓存粮数相等.两仓一共存粮多少千克?(A类同学做)

最新人教版小学六年级数学上册总复习教案范文2

教学目标:

1、初步掌握圆的特征,会用各种方法画圆;体验数学与日常生活密切相关,能用圆的知识来解释生活中的现象或用生活中的现象来解释圆的特征;

2、使学生通过想象与验证、观察与分析、动手操作、合作交流等活动,获得基本的数学知识和技能,进一步发展学生思维能力和初步的空间观念。

3、让学生在知识的主动建构过程中掌握一些数学的思想方法,发挥学生学习的主动性、独立性、合作性,培养学生的问题意识和创新意识。

教学重点:认识圆、掌握圆的特征,会画圆

教学难点:准确认识、掌握圆的特征并理解其在生活中的运用

教具学具:圆规、直尺、课件、圆纸片、学生自带一个轮廓为圆的物体

教学过程:

课前谈话:

认识我吗?了解我吗?能给同学们介绍一下我这个人有什么特点吗?看来认识一个人、一件事物,都应通过“观察——接触——研究——归纳”,才能达到真正认识!

讨论“套圈儿”游戏的规则引出“圆”

(宣布上课!)

一.情景引入、激发探究兴趣

圆在生活中太常见了!许多物体的形状与圆有关。你能举个例子吗?

古人最早是从日月的形状认识圆的,直到现在人们仍然喜欢用日月来形容一些圆的东西,古今中外的建筑设计以及各种平面图案的设计中,由于用到了圆而格外漂亮!请同学们看大屏幕,我们一起来欣赏、感受一下生活中的圆!

课件演示——最后抽象出数学的“圆”。

最新人教版小学六年级数学上册总复习教案范文3

使用教材:人教版六年制小学数学第十一册

教学目的:1、感受百分率源于生活,理解常用百分率的含义及计算方法。

2、让学生动手实验,培养学生自主探索、合作交流的能力。

3、渗透统计思想,培养学生用数学眼光观察生活的意识,在应用中体验数学的价值。

教学过程:

一、开展活动,产生问题。

1 学生实验。

教师准备好一桶盐水、一桶淡水,让学生拿出准备好的杯子,随便在哪一只桶里去装一杯水,再把鸡蛋放入杯中,观察发现了什么?(有的杯中的鸡蛋能浮起来、有的杯中的鸡蛋沉下去了)

1、猜测原因。

2、如果没发现原因,教师可以带学生尝一尝杯子里的水,发现鸡蛋能否浮起来与水的咸淡有关。

二、探究学习,初步感知

1、演示实验

一号杯中:倒入200克清水中放入5克盐。

二号杯中:倒入200克清水中放入10克盐。

三号杯中:倒入200克清水中放入20克盐。

观察:发生了什么变化?(盐溶化在水中了)

2、计算,三杯盐水中盐各占盐水的百分之几?

5÷(200+5) 10÷(200+10) 20÷(200+20)

=5÷20 =10÷210 =20÷220

2.4% 54.8% 9.1%

3、揭示:盐占盐水的百分比就是含盐率。

4、口述:①号、②号、③号杯中盐水的含盐率。

三、深入探究,寻找规律。

1、比一比三杯盐水的含盐水率的高低。

(方法1:看计算出的数据。方法2:尝盐水的味道。等)

2、含盐率的高低与什么有关。

① 猜测。(与盐的多少有关。与水的多少有关。)

② 讨论。

③ 验证。

А、与盐的多少有关。

在①号杯中在放入5克盐,计算出含盐率约为4.8%,与原来①号杯中含盐率约为2.4%比较:盐多起来了,含盐率高了。

Б、与水的多少有关系:

在②号杯中再放入20克水,计算出含盐率约为4.3%,与原来②杯含盐率约为4.8%比较:水多起来了,含盐率减低了。

④、结论:水不变,盐越多,含盐率越高。

盐不变,水越多,含盐率越低。

3、一杯水的含盐率是20%,要提高它的含盐率,该怎么办?(方法1、可以加盐。2、可以蒸发水分。等)

四、知识迁移、完善揭题。

1、种子发芽率的研究。

①课前同学们都做了种子发芽实验,请大家汇报试验情况。

(如:我试验用的种子是黄豆,共20粒,发芽了17粒。)

②为了提高种子的利用率,需要计算发芽率。什么是发芽率?怎么求?

③计算后,学生交流自己的种子的发芽率。

④问题:种子的发芽率可达多少?

2、除了含盐率、发芽率,在生活中还有很多百分率,请学生说一说你知道的百分率,并说一说你是怎样理解的?

3、这节课,我们学习了什么内容,谁来取个课题?(百分率应用)

五、比赛、调查、应用延伸

1、现场每人计算10道口算题,比一比谁的正确率高,然后再说一说有什么要提醒大家的?

2、现场请学生调查近视情况,计算出近视率,然后再谈一谈有什么想法或建议?

3、课后调查,填表我班共有 人,来自 个家庭

最新人教版小学六年级数学上册总复习教案范文4

教学内容:

人教版小学数学教材六年级上册第2~3页例1、例2及相关练习。

教学目标:

1.联系学生的生活实际创设情境,引导学生通过观察、讨论、比较、验证等环节探索并理解分数乘整数的意义;一个数乘分数的意义就是求“这个数的几分之几是多少”。

2.让学生在自主探索的基础上进行合作交流,从而归纳分数乘整数的计算方法,并能够正确地进行计算。

3.能利用所学知识解决生活中的简单问题,并进一步培养学生的分析和推理能力。

教学重点:

掌握分数乘整数的计算方法。

教学难点:

理解分数乘整数和一个数乘分数的意义。

教学准备:

课件。

教学过程:

一、情境创设,探求新知

(一)探索分数乘整数的意义

1.教学例1(课件出示情景图)

师:仔细观察,从图中能得到哪些数学信息?这里的“2/

9个”表示什么?你能利用已学知识解决这个问题吗?(学生独立思考)

师:想一想,你还能找出不一样的方法验证你的计算结果吗?

2.小组交流,汇报结果

预设:(1)2/

9+2/

9+2/

9=6/

9=2/

3(个);

(2)2/

9×3=6/

9=2/

3(个);

(3)3×2/

9=6/

9=2/

3(个);

(4)3个2/

9就是6个1/

9就是6/

9,再约分得到2/

3(个)。(根据学生发言依次板书)

3.比较分析

师:我们先来比较第(1)和第(2)两种方法,请分别说说你是怎么想的?预设,

生1:每个人吃2/

9个,3个人就是3个2/

9相加。

生2:3个2/

9个相加也可以用乘法表示为2/

9×3。

提出质疑:3个2/

9相加的和可以用乘法计算吗?为什么?

预设:乘法是求几个相同加数的和的简便计算,只是这里的相同加数是一个分数。

引导说出:分数乘整数的意义与整数乘法的意义相同。(板书)

师:我们再来比较第(2)和第(3)两种方法,这样算可以吗?为什么?

引导说出:这两个式子都可以表示“求3个2/

9相加是多少”。

师:再来看这里的第(4)种方法,你能理解它表示的意思吗?结合图形把你的想法跟同桌进行交流。

4.归纳小结

通过刚才的学习,我们知道了这三个算式解决的是同一个问题。并且知道了分数乘整数的意义与整数乘法的意义相同。接下来我们再看看它们的计算方法有什么联系和区别。

【设计意图:呈现生活情景,引导学生观察思考“一共吃了多少个?”,使学生迅速进入学习状态。以原有的知识和经验为基础,经历独立思考、自主计算并验证、小组交流等环节,鼓励学生大胆地呈现个性化的方法,兼顾了不同层次的学习状态。采用因势利导的方式,通过比较分析沟通新旧知识间的联系,引导学生自主得出结论,加深了对分数乘整数意义的理解。】

(二)分数乘整数的计算方法

1.不同方法呈现和比较

师:刚才的第(4)种方法用语言描述得出计算结果的过程,结合自己的解题方法回顾一下,2/

9×3的计算过程用式子该如何表示?预设,

生1:按照加法计算2/

9×3=2/

9+2/

9+2/

9=6/

9=2/

3(个)。

生2:2/

9×3=6/

9=2/

3(个)。

师:比较一下,这两种方法计算结果相同吗?它们的相同点在哪里?(分母都是9)不同之处又是什么?(根据学生回答分别打上方框)这里的2+2+2和2×3都是在求什么?预设:有多少个1/

9。

2.归纳算法

师:你觉得哪一种方法更简单?那么这种方法是怎样计算的呢?

引导说出:用分子与整数相乘的积作分子,分母不变。(板书)

3.先约分再计算的教学

师:刚才我看到有一位同学是这样计算的。与这里的第二种算法又有什么不同呢?

预设:一种算法是先计算再约分,另一种是先约分再计算。

师:比较一下,你认为哪一种方法更简单?为什么?

小结:“先约分再计算”的方法,使参与计算的数字比原来小,便于计算。但是要注意格式,约得的数与原数上下对齐。

【设计意图:通过比较,明确了自主探索的方向,使得对算法的感知上升到理解。教学过程中有意识地留给学生充足的思考时间,程度地发挥学生的主体性。“为什么分母不变,只用分子与整数相乘”这是教学的难点,通过多次追问,适度引导转化,促进学生的理解。对于“先约分再计算”这种方法的教学,充分利用课堂生成资源,引导学生经历观察与思考的过程,从而使学生“知其然”,更“知其所以然”。】

二、巩固练习,强化新知

1.例1“做一做”第1题

师:说出你的思考过程。

2.例1“做一做”第2题

师:在计算时要注意什么?(强化算法,突出能约分的要先约分,再计算。)

三、探索一个数乘分数的意义

教学例2(课件出示情景图)

(1)师:根据提供的信息你能提出什么问题?该怎样计算?说说你的想法。

预设1:求3桶共有多少升?就是求3个12 L的和是多少。

预设2:还可以说成求12 L的3倍是多少。

预设3:单位量×数量=总量,所以12×3=36(L)。

(2)师:我们再来看这个问题,你能列出算式吗?(学生思考,自主列式。)

交流:是根据什么列式的?引导说出思考的过程并板书:“求12 L的一半,就是求12 L的1/

2是多少。”

(3)出示第2小题学生自练。引导说出:“12×1/

4表示求12 L的1/

4是多少。”在这里都是把12 L看作单位“1”。

(4)师:依据单位量×数量=总量,你还能提出类似的问题并解决吗?(学生练习,交流。)

归纳小结:在这里,我们依据单位量×数量=总量的关系式可以得出:一个数乘几分之几表示的是求这个数的几分之几是多少。

四、课堂练习,深化理解

1.出示例2“做一做”。一袋面粉重3千克。已经吃了它的3/

10,吃了多少千克?

师:你能说说这个算式表示的意义吗?“求3千克的3/

10是多少。”

2.比较两种意义

出示:一袋面包重3/

10千克,3袋重多少千克?

师:列出算式,并与前一个式子进行比较。这两个式子有什么不同?

预设1:一个是分数乘整数,另一个是整数乘分数。

预设2:它们表示的意义相同但有所区别。

引导说出:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算(或者就是求一个数的几倍是多少)。而一个数乘分数的意义表示的是求这个数的几分之几是多少。

师:那么,它们有什么是相同的呢?(计算方法和结果)

【设计意图:对一个数乘分数意义的理解,从复习旧知导入,依据单位量×数量=总量这一数量关系,分别列出相应的乘法算式,在此基础上,重点让学生说出解决后两个问题列式的依据是什么?再通过尝试练习和交流,不断加深学生的感性认识,丰富归纳的素材,最终导出此类分数乘法的意义。比较的环节充分挖掘教材资源,通过对两种不同算式的分析比较,抽象出两个算式的共同点,异中求同,进而深化学生对分数乘法意义的理解。】

五、联系实际,灵活运用

1.算式3/

16+3/

16+3/

16+3/

16可以列成 _________× _________,表示 ;或者表示 _________;

也可以列成_________ ×_________ ,表示 。

师:选择一个算式进行计算,想一想,计算时要注意什么?

2.比较练习

(1)一堆煤有5吨,用去了2/

11,用去了多少吨?

(2)一堆煤有2/

11吨,5堆这样的煤有多少吨?

你能编写出类似的问题并加以解决吗?

3.拓展练习

1只树袋熊一天大约吃6/

7 kg桉树叶。10只树袋熊一星期吃多少千克桉树叶?

【设计意图:练习的设计密切联系教学的重难点,同时习题的编排体现由易到难的层次性,选取的素材紧密联系学生的生活实际,具有一定的趣味性。】

六、课堂小结,拓展延伸

1.这节课你有什么收获?明白了什么?说一说分数乘整数的计算方法?

2.谁会用含有字母的式子表示分数乘整数的计算方法?a/

b×c=ac/

b,其中a,b,c均为整数且a≠0。

【设计意图:通过回顾,强化对所学知识的理解。要求学生用含有字母的式子表示计算方法,很好地培养了学生的符号表达能力。】

最新人教版小学六年级数学上册总复习教案范文5

教学内容:

教材第19页,例9和“做一做”中的题目,练习五的第1、2题。

教学目的:

使学生理解倒数的意义,掌握求倒数的方法。

教具准备:将复习题写在小黑板上。

教学过程:

一、复习

出示复习题,让学生口算各题。

(1)3/8×2/3= 3×1/3= 7/15×15/7= 1/80×80=

(2)3/8×1/3= 3/5×1/3= 7/15×5/7= 1/80×80/93=

二、新课

1、教学倒数的意义

教师:“上面的两组题有什么不同?”(第一组每个算式中两个数相乘的积都是1,第二组每个算式中两个数相乘的几不是1。)

教师:“像第一组这样,乘积是1的两个数叫做互为倒数。”

教师举例说明:3/8和8/3互为倒数,就是3/8的倒数是8/3,8/3的倒数是3/8。

教师:“倒数是对两个数来说的,它们是相互依存的,必须说一个数是另一个数的倒数,不能孤立地说某一个数是倒数。”

教师:“例如3/8是倒数,能不能这样说?”(不能)

教师再强调倒数是对两个数来说的。

然后让学生试着说一说第一组中其他3个算式中两个数的关系,说的时候,注意让学生说出“互为倒数”,同时让学生明确谁是谁的倒数。

教师:“谁还能举出几组两个数互为倒数的例子?”

多让学生说一说,并让其他学生根据倒数的意义来检验是不是正确。

2、教学求倒数的方法

(1)出示复习题的第一组算式。

教师:“观察互为倒数的一组数的分子、分母有什么特点?如果给你一个数你能说出它的倒数吗?”让学生适当讨论,并对发现的规律进行归纳.使学生明确:互为倒数的两个数的分子、分母是互相调换位置的.

(2)出示例题

教师:“怎样找出3/5的倒数呢?”

引导学生说出:“只要把3/5的分子、分母调换位置就是3/5的倒数,即:3/5的倒数是5/3

教师板书:

分子、分母调换位置

3/5 ─────────→5/3

7/2的倒数就可以让学生自己写.

教师接着问:“自然数3的倒数是多少?3可以看成分母是几的分数?”(3可以看成分母是1的分数.)

“那么3的倒数怎样求?”(把分子、分母调换位置,3的倒数就是.)

教师:“任意一个自然数的倒数应该怎样求?”(一个自然数的倒数就是以这个自然数作分母以1作分子的分数.)

接着问:“是不是所有的数都有倒数?什么数没有倒数?”(0没有倒数.)

“0为什么没有倒数?”(因为0不能作分母,所以0没有倒数.)

教师:“请大家总结一下求一个数的倒数的方法.”让学生多说一说,教师注意提醒学生把0排除在外.最后归纳出书上的结语.

2.做教科书第34页的“做一做”.

学生独立解答,教师巡视,了解学生掌握的情况,对学习有困难的学生进行个别辅导.集体订正时,有意识地让学习有困难的学生说一说是怎样想的.

三、巩固练习

1.做练习五的第1题.

学生独立填数,教师巡视,集体订正.对于学习有困难的学生,教师可以适当提示,如:“什么样的两个数相乘的积是1?那么,要填的应该是什么数?”

2.做练习五的第2题.

学生先独立找,教师巡视,看学生找得对不对,存在什么问题.集体订正时,可以让学习比较好的学生说一说是怎样找的.使学生明确,根据倒数的意义,只要看哪两个数的乘积是1,哪两个数就互为倒数.

四、小结

教师:“今天我们认识了倒数,请同学们说一说你们知道了倒数的那些知识?”

五、布置作业 练习五的3、4、9题。