高中数学必修一集合的公式
1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性
(2)集合的分类;有限集,无限集 (3)集合的表示法:列举法,描述法,图示法
2、集合间的关系:子集:对任意x?A,都有 x?B,则称A是B的子集。记作A?B 真子集:若A是B的子集,且在B中至少存在一个元素不属于A,则A是B的真子集, 记作A?B 集合相等:若:A?B,B?A,则A?B
?
3. 元素与集合的关系:属于? 不属于:? 空集:?
4、集合的运算:并集:由属于集合A或属于集合B的元素组成的集合叫并集,记为 AB
交集:由集合A和集合B中的公共元素组成的集合叫交集,记为AB
补集:在全集U中,由所有不属于集合A的元素组成的集合叫补集,
记为CUA 5.集合{a1,a2,
nn
真子集有2–1个;非空子集有2 –1个; ,an}的子集个数共有2n 个;
6.常用数集:自然数集:N 正整数集:N 整数集:Z 有理数集:Q 实数集:R
高中数学必修一函数公式
1、定义: 奇函数 <=> f (– x ) = – f ( x ) ,偶函数 <=> f (–x ) = f ( x )(注意定义域) 2、性质:(1)奇函数的`图象关于原点成中心对称图形; (2)偶函数的图象关于y轴成轴对称图形;
(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y轴对称,那么这个函数是偶函数. 二、函数的单调性
1、定义:对于定义域为D的函数f ( x ),若任意的x1, x2∈D,且x1 < x2
① f ( x1 ) < f ( x 2 ) <=> f ( x1 ) – f ( x2 ) < 0 <=> f ( x )是增函数 ② f ( x1 ) > f ( x 2 ) <=> f ( x1 ) – f ( x2 ) > 0 <=> f ( x )是减函数 2、复合函数的单调性: 同增异减
三、二次函数y = ax2 +bx + c(a?0)的性质
?b4ac?b2?b4ac?b2
1、顶点坐标公式:???2a,4a??, 对称轴:x??2a,最大(小)值:4a
??
2.二次函数的解析式的三种形式
(1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)两根式f(x)?a(x?x1)(x?x2)(a?0). 四、指数与指数函数
1、幂的运算法则:
(1)a m ? a n = a m + n ,(2)a?a?a
n
m
n
m?n
,(3)( a m ) n = a m n (4)( ab ) n = a n ? b n
n
n
?11an?a??nn0m
(5) ???n(6)a = 1 ( a≠0)(7)a?n (8)a?a(9)am?
nabb??a
2、根式的性质
(1)n?a.
(2)当n
?a; 当n
?|a|??
?a,a?0.
??a,a?0
4、指数函数y = a x (a > 0且a≠1)的性质:
(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)
5.指数式与对数式的互化: logaN?b?ab?N(a?0,a?1,N?0).
五、对数与对数函数
1对数的运算法则:
logN
(1)a b = N <=> b = log a N(2)log a 1 = 0(3)log a a = 1(4)log a a b = b(5)a a = N (6)log a (MN) = log a M + log a N (7)log a (
M) = log a M -- log a N N
(8)log a N b = b log a N (9)换底公式:log a N =n
logbN
logba
(10)推论 logamb?(11)log a N =n
logab(a?0,且a?1,m,n?0,且m?1,n?1, N?0). m1
(12)常用对数:lg N = log 10 N
(13)自然对数:ln A = log e AlogNa
(其中 e = 2.71828…)
2、对数函数y = log a x (a > 0且a≠1)的性质:
(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)
六、幂函数y = x a 的图象:(1) 根据 a
例如:
y = x
y?
2
x?x y?
12
1
?x?1 x
七.图象平移:若将函数y?f(x)的图象右移a、上移b个单位, 得到函数y?f(x?a)?b的图象; 规律:左加右减,上加下减 八. 平均增长率的问题
如果原来产值的基础数为N,平均增长率为p,则对于时间x的总产值y,有y?N1(?p)x. 九、函数的零点:1.定义:对于y?f(x),把使f(x)?0的X叫y?f(x)的零点。即 y?f(x)的图象与X轴相交时交点的横坐标。
2.函数零点存在性定理:如果函数y?f(x)在区间?a,b?上的图象是连续不断的一条 曲线,并有f(a)?f(b)?0,那么y?f(x)在区间?a,b?内有零点,即存在c??a,b?, 使得f(c)?0,这个C就是零点。 3.二分法求函数零点的步骤:(给定精确度?)
a?b
2
(3)计算f(x1)①若f(x1)?0,则x1就是零点;②若f(a)?f(x1)?0,则零点
(1)确定区间?a,b?,验证f(a)?f(b)?0;(2)求?a,b?的中点x1?
x0??a,x1? ③若f(x1)?f(b)?0,则零点x0??x1,b?;
(4)判断是否达到精确度?,若a?b??,则零点为a或b或?a,b?内任一值。否 则重复(2)到(4)
高一数学必修一重点公式整理
【和差化积】
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
【某些数列前n项和】
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1_X2=c/a 注:韦达定理
【判别式】
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
【两角和公式】
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
【倍角公式】
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
【半角公式】
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
【降幂公式】
(sin^2)x=1-cos2x/2
(cos^2)x=i=cos2x/2
【万能公式】
令tan(a/2)=t
sina=2t/(1+t^2)
cosa=(1-t^2)/(1+t^2)
tana=2t/(1-t^2)
河南高考排名195560左右排位理科可以上哪些大学,具体能上什么大学
吉林外国语大学和湘潭大学兴湘学院哪个好 附对比和区别排名
江西工商职业技术学院在黑龙江高考历年录戎数线(2024届参考)
甘肃高考排名5480左右排位理科可以上哪些大学,具体能上什么大学
四川文化艺术学院和天津城建大学哪个好 附对比和区别排名
江西高考排名71510左右排位理科可以上哪些大学,具体能上什么大学
关于高一生物信息化教学工作总结
高三物理一轮复习详案教案五篇
苏教版生物七年级下册教案五篇
三年级下学期数学教学总结五篇
三年级下学期数学教学总结五篇
幼儿园小班数学教学计划范文
数学任课教师教学心得总结范文7篇
新版北师大版二年级下册数学教案最新模板
最新一年级数学跷跷板教案模板
二年级下册数学统计教案文案
齐齐哈尔工程学院在新疆高考招生计划人数专业代码(2024参考)
宁夏工商职业技术学院在河南高考招生计划人数专业代码(2024参考)
河北高考排名184970左右排位历史可以上哪些大学,具体能上什么大学
湖北高考排名174600左右排位物理可以上哪些大学,具体能上什么大学
考福州外语外贸学院要多少分宁夏考生 附2024录取名次和最低分
湖南师范大学在云南高考招生计划人数专业代码(2024参考)
广东高考排名247430左右排位物理可以上哪些大学,具体能上什么大学
陕西青年职业学院在宁夏高考历年录戎数线(2024届参考)
安徽文达信息工程学院的审计学专业排名怎么样 附历年录戎数线
安徽高考排名263910左右排位理科可以上哪些大学,具体能上什么大学
考安顺学院要多少分广东考生 附2024录取名次和最低分
广东高考排名94120左右排位物理可以上哪些大学,具体能上什么大学
四川高考排名6710左右排位理科可以上哪些大学,具体能上什么大学
考洛阳科技职业学院要多少分甘肃考生 附2024录取名次和最低分
福建高考排名46830左右排位物理可以上哪些大学,具体能上什么大学
重庆机电职业技术大学的数控技术专业排名怎么样 附历年录戎数线
郑州升达经贸管理学院和辽宁工业大学哪个好 附对比和区别排名
赣州职业技术学院和扬州工业职业技术学院哪个好 附对比和区别排名
江西外语外贸职业学院在内蒙古高考历年录戎数线(2024届参考)
四川高考排名14260左右排位理科可以上哪些大学,具体能上什么大学
最新二年级数学奥运开幕教案例文
数学课程教学计划范文
数学功课新学期教学计划范文
最新三年级数学下册第二单元教案范文
三年级下册数学第四单元教案范文
学期末高中数学教学总结五篇
一年级数学教案模板最新版
最新人教版小学六年级数学上册总复习教案范文
自主探究数学的教学课堂深刻总结模板
高考数学压轴题解题技巧方法
处暑节气的习俗介绍最新
九年级数学总复习试卷归纳大全
高考必考数学知识点整理
七年级数学课堂教学工作总结
初中的数学部分重要知识点总结