初中数学实用的几何知识点总结

马振华老师

直角三角形的知识点

基本简介:

等腰直角三角形的边角之间的关系:

(1)三角形三内角和等于180°;

(2)三角形的一个外角等于和它不相邻的两个内角之和;

(3)三角形的一外角大于任何一个和它不相邻的内角;

(4)三角形两边之和大于第三边,两边之差小于第三边;

(5)在同一个三角形内,大边对大角,大角对大边。

等腰直角三角形中的四条特殊的线段:角平分线,中线,高,中位线。

(1)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等。

(三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等)。

(2)三角形的.三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的2倍。

(3)三角形的三条高的交点叫做三角形的垂心。

(4)三角形的中位线平行于第三边且等于第三边的二分之一。

(5)三角形的一条内角平分线与两条外角平分线交于一点,该点即为三角形的旁心。

注意:

①任意三角形的内心、重心都在三角形的内部。

②钝角三角形垂心、外心在三角形外部。

③直角三角形垂心、外心在三角形的边上。(直角三角形的垂心为直角顶点,外心为斜边中点。)

④锐角三角形垂心、外心在三角形内部。

⑤任意三角形的旁心一定在三角形的外部。

直角三角形的相关线段:

1、中线:顶点与对边中点的连线,平分三角形。

2、角平分线:平分三角形一内角的线段。

3、高线:三角形中一顶点向对边作的垂线。

等腰梯形的知识点

定义

一组对边平行(不相等),另一组对边不平行但相等的四边形叫做等腰梯形。顾名思义,等腰梯形是两腰相等的梯形,它是梯形的一种特殊情况。

判定

1、以下判定可作为定理使用:

(1)一组对边相等且不平行,另一组对边平行的四边形是等腰梯形。

(2)同一底上的两个角相等的梯形是等腰梯形。

(3)对角线相等的`梯形是等腰梯形。

(4)两腰相等的梯形是等腰梯形。

以下判定不作为定理使用:

(1)对角线相等且能形成两个等腰三角形的四边形是等腰梯形。

(2)对角互补的梯形是等腰梯形。

面积公式

对于等腰梯形,其面积计算方法与普通梯形一致。用a、b、h分别表示梯形的上底、下底、高,S表示梯形的面积,则S=(a+b)×h÷2。

通俗的说,梯形的面积=(上底+下底)×高÷2。

特殊情况

1、若等腰梯形对角线互相垂直,则面积为1/2乘以两对角线长度的乘积。

2、在已知中位线情况下,等腰梯形的面积等于中位线的长度乘以高。

棱柱的知识点

棱柱的定义

有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的'侧面。两个侧面的公共边叫做棱柱的侧棱。侧面与底的公共顶点叫做棱柱的顶点,不在同一个面上的两个顶点的连线叫做棱柱的对角线,两个底面的距离叫做棱柱的高。

棱柱的性质

①棱柱的各个侧面都是平行四边形,所有的侧棱都相等,直棱柱的各个侧面都是矩形,正棱柱的各个侧面都是全等的矩形;

②与底面平行的截面是与底面对应边互相平行的全等多边形;

③过棱柱不相邻的两条侧棱的截面都是平行四边形。

棱台的定义

用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台,原棱锥的底面和截面分别叫做棱台的下底面和上底面。

棱锥的定义

如果一个多面体的一个面是多边形,其余各个面是有一个公共顶点的三角形,那么这个多面体叫棱锥。在棱锥中有公共顶点的各三角形叫做棱锥的侧面,棱锥中这个多边形叫做棱锥的底面,棱锥中相邻两个侧面的交线叫做棱锥的侧棱,棱锥中各侧棱的公共顶点叫棱锥的顶点。棱锥顶点到底面的距离叫棱锥的高,过棱锥不相邻的两条侧棱的截面叫棱锥的对角面。

按照棱锥底面多边形的边数可将棱锥分为:三棱锥