高考数学选填题解题技巧总结

孙小飞老师

高考数学解题技巧

特值检验法:

对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

极端性原则:

极将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

剔除法:

剔除利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

数形结合法:

由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

递推归纳法:

通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

顺推_法:

顺利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

逆推验证法(代答案入题干验证法):

将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

正难则反法:

正从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

特征分析法:

特对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

估值选择法:

有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

高考数学选填技巧

快速解题技巧一、利用题目中的已知条件和选项的特殊性。对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

快速解题技巧二、利用图形的特殊性(平面解析、立体几何常用)将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

这道题就非常考察学生的应变能力和解题思想,相信这么一画图,答案马上就出来了,并且不需要任何计算还符合题意。而大部分学生可能是画一个正三棱柱,并取中点设定P,Q两点,从而进行计算。这也是一种解题思想,但是还是过于拘泥于“正规答题”,P与A1重合,Q与C重合是大家的思维盲点,如果能打破这些盲点,解这类题将容易的多。很多平面解析图用到这种“极端”的思想,是非常容易解决的,尤其是选择题中求定值、求取值范围的题型。

快速解题技巧三:利用选项比较快速答题。利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

数学选填解题技巧

选填题的类型一般可分为:完形选填题、多选选填题、条件与结论开放的选填题。这说明了选填题是数学中考命题重要的组成部分,它约占了整张试卷的三分之一。因此,我们在备考时,既要关注这一新动向,又要做好应试的技能准备。解题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整。合情推理、优化思路、少算多思将是快速、准确地解答选填题的基本要求。

方法解析

解答选填题的基本策略是准确、迅速、整洁。准确是解答选填题的先决条件,选填题不设中间分,一步失误,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选填题的答题时间,应该控制在不超过20分钟左右,速度越快越好,要避免“超时失分”现象的发生;整洁是保住得分的充分条件,只有把正确的答案整洁的书写在答题纸上才能保证阅卷教师正确的批改,在网上阅卷时整洁显得尤为重要。中考中的数学选填题一般是容易题或中档题,数学选填题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。求解选填题的基本策略是要在“准”、“巧”、“快”上下功夫。常用的方法有直接法、特殊化法、数行结合法、等价转化法等。

一、直接法

这是解选填题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。它是解选填题的最基本、最常用的`方法。使用直接法解选填题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。

二、特殊化法

当选填题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。这样可大大地简化推理、论证的过程。

三、数形结合法

“数缺形时少直观,形缺数时难入微。”数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到“形帮数”的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到“数促形”的目的。对于一些含有几何背景的选填题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。

四、等价转化法

通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。